Display options
Share it on

J Mater Chem B. 2018 Sep 21;6(35):5604-5612. doi: 10.1039/C8TB01014E. Epub 2018 Aug 23.

Elastic serum-albumin based hydrogels: mechanism of formation and application in cardiac tissue engineering.

Journal of materials chemistry. B

Nadav Amdursky, Manuel M Mazo, Michael R Thomas, Eleanor J Humphrey, Jennifer L Puetzer, Jean-Philippe St-Pierre, Stacey C Skaalure, Robert M Richardson, Cesare M Terracciano, Molly M Stevens

Affiliations

  1. Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College Lodon, London, SW7 2AZ, UK.
  2. National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, SW7 2AZ, UK.
  3. H H Wills Physics Laboratory, University of Bristol, Bristol, BS8 1TL, UK.

PMID: 30283632 PMCID: PMC6166857 DOI: 10.1039/C8TB01014E

Abstract

Hydrogels are promising materials for mimicking the extra-cellular environment. Here, we present a simple methodology for the formation of a free-standing viscoelastic hydrogel from the abundant and low cost protein serum albumin. We show that the mechanical properties of the hydrogel exhibit a complicated behaviour as a function of the weight fraction of the protein component. We further use X-ray scattering to shed light on the mechanism of gelation from the formation of a fibrillary network at low weight fractions to interconnected aggregates at higher weight fractions. Given the match between our hydrogel elasticity and that of the myocardium, we investigated its potential for supporting cardiac cells

Conflict of interest statement

Conflicts of interest There are no conflicts to declare.

References

  1. Biorheology. 2006;43(6):721-8 - PubMed
  2. Nat Mater. 2010 Jun;9(6):518-26 - PubMed
  3. J Cell Sci. 2008 Nov 15;121(Pt 22):3794-802 - PubMed
  4. Tissue Eng Part C Methods. 2016 May;22(5):464-72 - PubMed
  5. J Biomech Eng. 2009 Jun;131(6):061014 - PubMed
  6. ACS Nano. 2013 Mar 26;7(3):2369-80 - PubMed
  7. Biophys J. 2010 Jan 6;98(1):147-57 - PubMed
  8. Cell. 2016 May 19;165(5):1147-1159 - PubMed
  9. Nat Mater. 2016 Mar;15(3):326-34 - PubMed
  10. Circ Res. 2011 Jun 24;109(1):47-59 - PubMed
  11. Biotechnol Bioeng. 2014 Jun;111(6):1246-57 - PubMed
  12. Arterioscler Thromb Vasc Biol. 2014 Oct;34(10):2191-8 - PubMed
  13. Circ Res. 2002 Nov 1;91(9):769-75 - PubMed
  14. Am J Physiol Heart Circ Physiol. 2010 May;298(5):H1616-25 - PubMed
  15. Development. 2017 Dec 1;144(23):4271-4283 - PubMed
  16. Biochim Biophys Acta. 2007 Sep;1774(9):1128-38 - PubMed
  17. Acta Biomater. 2014 Jul;10(7):3235-42 - PubMed
  18. Circ Res. 2016 Jan 22;118(2):296-310 - PubMed
  19. Am J Physiol Heart Circ Physiol. 2006 Jun;290(6):H2196-203 - PubMed
  20. Biomaterials. 2008 Jan;29(1):47-57 - PubMed
  21. Biomaterials. 1996 Sep;17(17):1647-57 - PubMed
  22. Am J Physiol Heart Circ Physiol. 2012 Dec 15;303(12):H1385-96 - PubMed
  23. J Phys Chem B. 2006 Oct 26;110(42):20733-6 - PubMed
  24. Biomacromolecules. 2014 Oct 13;15(10):3625-33 - PubMed
  25. Biofabrication. 2014 Jun;6(2):025004 - PubMed
  26. ACS Appl Mater Interfaces. 2018 Feb 14;10(6):5305-5317 - PubMed
  27. Soft Matter. 2014 Mar 28;10(12):1905-16 - PubMed
  28. Circulation. 2017 May 9;135(19):1832-1847 - PubMed
  29. Int J Pept Protein Res. 1980 Oct;16(4):339-51 - PubMed
  30. Circ Res. 1998 Feb 9;82(2):232-43 - PubMed
  31. Development. 2017 Dec 1;144(23):4249-4260 - PubMed
  32. Nat Methods. 2013 Aug;10(8):781-7 - PubMed
  33. Cell Stem Cell. 2016 Jan 7;18(1):39-52 - PubMed
  34. Cell. 2006 Aug 25;126(4):677-89 - PubMed
  35. Biophys J. 2008 Oct;95(7):3479-87 - PubMed
  36. Phys Chem Chem Phys. 2015 Dec 21;17(47):32023-32 - PubMed
  37. Circulation. 2016 Nov 15;134(20):1557-1567 - PubMed

Publication Types

Grant support