Display options
Share it on

Insects. 2018 Nov 01;9(4). doi: 10.3390/insects9040154.

Molecular Phylogeny, Diversity and Zoogeography of Net-Winged Beetles (Coleoptera: Lycidae).

Insects

Michal Masek, Michal Motyka, Dominik Kusy, Matej Bocek, Yun Li, Ladislav Bocak

Affiliations

  1. Laboratory of Molecular Systematics, Department of Zoology, Faculty of Science, Palacky University, 71146 Olomouc, Czech Republic. [email protected].
  2. Laboratory of Molecular Systematics, Department of Zoology, Faculty of Science, Palacky University, 71146 Olomouc, Czech Republic. [email protected].
  3. Laboratory of Molecular Systematics, Department of Zoology, Faculty of Science, Palacky University, 71146 Olomouc, Czech Republic. [email protected].
  4. Laboratory of Molecular Systematics, Department of Zoology, Faculty of Science, Palacky University, 71146 Olomouc, Czech Republic. [email protected].
  5. Laboratory of Molecular Systematics, Department of Zoology, Faculty of Science, Palacky University, 71146 Olomouc, Czech Republic. [email protected].
  6. State Key Laboratory of Biocontrol, College of Ecology and Evolution, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China. [email protected].
  7. Laboratory of Molecular Systematics, Department of Zoology, Faculty of Science, Palacky University, 71146 Olomouc, Czech Republic. [email protected].

PMID: 30388727 PMCID: PMC6315567 DOI: 10.3390/insects9040154

Abstract

We synthesize the evidence from molecular phylogenetics, extant distribution, and plate tectonics to present an insight in ancestral areas, dispersal routes and the effectiveness of geographic barriers for net-winged beetle tribes (Coleoptera: Lycidae). Samples from all zoogeographical realms were assembled and phylogenetic relationships for ~550 species and 25 tribes were inferred using nuclear rRNA and mtDNA markers. The analyses revealed well-supported clades at the rank of tribes as they have been defined using morphology, but a low support for relationships among them. Most tribes started their diversification in Southeast and East Asia or are endemic to this region. Slipinskiini and Dexorini are Afrotropical endemics and Calopterini, Eurrhacini, Thonalmini, and Leptolycini remained isolated in South America and the Caribbean after their separation from northern continents. Lycini, Calochromini, and Erotini support relationships between the Nearctic and eastern Palearctic faunas; Calochromini colonized the Afrotropical realm from East Asia and Metriorrhynchini Afrotropical and Oriental realms from the drifting Indian subcontinent. Most tribes occur in the Oriental and Sino-Japanese realms, the highest alpha-taxonomic diversity was identified in Malesian tropical rainforests. The turn-over at zoogeographical boundaries is discussed when only short distance over-sea colonization events were inferred. The lycid phylogeny shows that poor dispersers can be used for reconstruction of dispersal and vicariance history over a long time-span, but the current data are insufficient for reconstruction of the early phase of their diversification.

Keywords: Coleoptera; Elateroidea; Lycidae; diversity; molecular phylogeny; zoogeographic boundaries; zoogeographic realms; zoogeography

References

  1. Mol Phylogenet Evol. 2001 Dec;21(3):398-407 - PubMed
  2. Mol Phylogenet Evol. 2008 Jan;46(1):183-92 - PubMed
  3. Proc Biol Sci. 2008 Sep 7;275(1646):2015-23 - PubMed
  4. Philos Trans R Soc Lond B Biol Sci. 2008 Oct 27;363(1508):3293-308 - PubMed
  5. Evolution. 2010 Jan;64(1):39-52 - PubMed
  6. Mol Ecol. 2010 Nov;19(21):4800-11 - PubMed
  7. BMC Biol. 2011 Aug 18;9:55 - PubMed
  8. Bioinformatics. 2011 Oct 15;27(20):2910-2 - PubMed
  9. Science. 2013 Jan 4;339(6115):74-8 - PubMed
  10. Mol Biol Evol. 2013 Apr;30(4):772-80 - PubMed
  11. PLoS One. 2013 Jun 26;8(6):e67957 - PubMed
  12. Science. 2013 Jul 26;341(6144):343 - PubMed
  13. Zootaxa. 2013 Jan 16;3608:94-100 - PubMed
  14. Mol Phylogenet Evol. 2014 Jul;76:162-71 - PubMed
  15. PLoS Comput Biol. 2014 Apr 10;10(4):e1003537 - PubMed
  16. Zootaxa. 2014 Jun 04;(3811):374-80 - PubMed
  17. Mol Biol Evol. 2015 Jan;32(1):268-74 - PubMed
  18. Mol Phylogenet Evol. 2015 Jun;87:80-90 - PubMed
  19. PLoS One. 2015 Apr 28;10(4):e0123855 - PubMed
  20. Zootaxa. 2013;3721:495-500 - PubMed
  21. Proc Biol Sci. 2016 May 11;283(1830): - PubMed
  22. Philos Trans R Soc Lond B Biol Sci. 2016 Sep 5;371(1702): - PubMed
  23. Sci Rep. 2016 Sep 16;6:33579 - PubMed
  24. Nat Methods. 2017 Jun;14(6):587-589 - PubMed
  25. Nat Commun. 2018 Jan 15;9(1):205 - PubMed
  26. Sci Rep. 2018 Feb 27;8(1):3744 - PubMed
  27. PLoS One. 2018 Mar 14;13(3):e0194026 - PubMed
  28. Front Zool. 2018 May 2;15:21 - PubMed
  29. J Morphol. 1994 Feb;219(2):183-192 - PubMed
  30. Virus Evol. 2018 Jun 08;4(1):vey016 - PubMed
  31. Mol Phylogenet Evol. 2018 Nov;128:1-11 - PubMed
  32. J Exp Biol. 1970 Dec;53(3):573-95 - PubMed

Publication Types

Grant support