Display options
Share it on

Evid Based Complement Alternat Med. 2018 Oct 02;2018:6356190. doi: 10.1155/2018/6356190. eCollection 2018.

Effect of Total Flavones from Cuscuta Chinensis on Anti-Abortion via the MAPK Signaling Pathway.

Evidence-based complementary and alternative medicine : eCAM

Hai-Wang Wu, Yi-Hui Feng, Dong-Ying Wang, Wei-Yu Qiu, Qing-Ying Yu, Li-Lin Yang, Chun Liang, Song-Ping Luo, Jie Gao

Affiliations

  1. Guangzhou University of Chinese Medicine, Guangzhou, China.
  2. Division of Life Science, Center for Cancer Research and State Key Lab for Molecular Neural Science, Hong Kong University of Science and Technology, Hong Kong, China.
  3. Department of Gynecology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.

PMID: 30369955 PMCID: PMC6189658 DOI: 10.1155/2018/6356190

Abstract

For centuries, the Chinese herb Cuscuta chinensis has been applied clinically for abortion prevention in traditional Chinese medicine (TCM). Total flavones extracted from Cuscuta chinensis (TFCC) are one of the active components in the herb and also display anti-abortion effect similar to the unprocessed material. However, how TFCC exerts the anti-abortion effect remains largely unknown. In this study, we aim at characterizing the anti-abortion effects of TFCC and its underlying molecular mechanism in vitro and in vivo using human primary decidua cells and a mifepristone-induced abortion model in rat, respectively. The damage to the decidua caused by mifepristone in vivo was reversed by TFCC treatment in a dosage-dependent manner. High dosage of TFCC significantly upregulated the expression of estrogen receptor (ER), progesterone receptor (PR), and prolactin receptor (PRLR) in decidua tissue but downregulated the expression of p-ERK. Furthermore, we detected higher level of p-ERK and p-p38 in primary decidua cells from spontaneous abortion while treatment by TFCC downregulated their expression. Our results suggest TFCC mediates its anti-abortion effect by interfering with MAPK signaling pathway.

References

  1. Mol Med Rep. 2017 Nov;16(5):6483-6488 - PubMed
  2. Mol Neurobiol. 2016 May;53(4):2529-40 - PubMed
  3. Mol Biol Rep. 2014 Sep;41(9):6117-24 - PubMed
  4. Oncol Rep. 2016 Jan;35(1):117-26 - PubMed
  5. Chin J Nat Med. 2014 Aug;12(8):573-81 - PubMed
  6. Development. 2014 Jul;141(14):2825-37 - PubMed
  7. Int J Mol Med. 2018 Jan;41(1):77-86 - PubMed
  8. Zhong Yao Cai. 2008 Nov;31(11):1706-9 - PubMed
  9. Am J Chin Med. 2014;42(1):223-42 - PubMed
  10. J Med Food. 2009 Feb;12(1):85-92 - PubMed
  11. J Ethnopharmacol. 2013 Jan 9;145(1):241-53 - PubMed
  12. Clin Exp Obstet Gynecol. 2013;40(2):271-4 - PubMed
  13. Am J Reprod Immunol. 2004 Jul;52(1):8-18 - PubMed
  14. Cell Biol Toxicol. 2017 Oct;33(5):457-466 - PubMed
  15. Afr J Tradit Complement Altern Med. 2013 Apr 12;10(3):469-74 - PubMed
  16. Fertil Steril. 2014 Jul;102(1):257-63 - PubMed
  17. Contraception. 2016 Aug;94(2):143-51 - PubMed
  18. Fitoterapia. 2016 Sep;113:58-63 - PubMed
  19. Pathol Res Pract. 2017 May;213(5):476-482 - PubMed
  20. Mol Hum Reprod. 2014 Apr;20(4):358-72 - PubMed
  21. Neural Regen Res. 2013 Oct 25;8(30):2820-6 - PubMed
  22. Physiol Rep. 2017 Mar;5(5):null - PubMed
  23. Placenta. 2015 Jun;36(6):652-60 - PubMed
  24. Zhongguo Zhong Yao Za Zhi. 1991 Oct;16(10):581-3, 638 - PubMed
  25. Medicine (Baltimore). 2016 Mar;95(11):e3075 - PubMed
  26. Gynecol Endocrinol. 2015 Oct;31(10):796-800 - PubMed
  27. Am J Chin Med. 2016;44(6):1187-1206 - PubMed

Publication Types