Display options
Share it on

Nucleus. 2019 Dec;10(1):42-47. doi: 10.1080/19491034.2019.1580100.

Novel contribution of epigenetic changes to nuclear dynamics.

Nucleus (Austin, Tex.)

Marcel Dreger, Elena Madrazo, Adam Hurlstone, Javier Redondo-Muñoz

Affiliations

  1. a Faculty of Biology, Medicine and Health, Division of Cancer Studies , School of Medical Sciences, The University of Manchester , Manchester , UK.
  2. b Department of Immunology Ophthalmology and ENT, Hospital 12 de Octubre Health Research Institute (imas12) , Complutense University, School of Medicine , Madrid , Spain.
  3. c Lydia Becker Institute for Inflammation and Immunity , The University of Manchester , Manchester , UK.

PMID: 30784352 PMCID: PMC6527383 DOI: 10.1080/19491034.2019.1580100

Abstract

Migrating cells have to cross many physical barriers and confined in 3D environments. The surrounding environment promotes mechano- and biological signals that orchestrate cellular changes, such as cytoskeletal and adhesion rearrangements and proteolytic digestion. Recent studies provide new insights into how the nucleus must alter its shape, localization and mechanical properties in order to promote nuclear deformability, chromatin compaction and gene reprogramming. It is known that the chromatin structure contributes directly to genomic and non-genomic functions, such as gene transcription and the physical properties of the nucleus. Here, we appraise paradigms and novel insights regarding the functional role of chromatin during nuclear deformation. In so doing, we review how constraint and mechanical conditions influence the structure, localization and chromatin decompaction. Finally, we highlight the emerging roles of mechanogenomics and the molecular basis of nucleoskeletal components, which open unexplored territory to understand how cells regulate their chromatin and modify the nucleus.

Keywords: Epigenetics; cell migration; chromatin; mechanogenomics; nuclear mechanics

References

  1. Stem Cells Int. 2018 Oct 8;2018:2891957 - PubMed
  2. Dev Cell. 2016 Aug 22;38(4):371-83 - PubMed
  3. Proc Natl Acad Sci U S A. 1997 Feb 4;94(3):849-54 - PubMed
  4. Curr Top Dev Biol. 2014;109:1-52 - PubMed
  5. Mol Biol Cell. 2017 Jul 7;28(14):1984-1996 - PubMed
  6. Mol Biol Cell. 2018 Jan 15;29(2):220-233 - PubMed
  7. Cell Rep. 2017 Jan 17;18(3):685-699 - PubMed
  8. Science. 2016 Apr 15;352(6283):353-8 - PubMed
  9. J Cell Sci. 2018 Jul 4;131(13): - PubMed
  10. Cancers (Basel). 2018 Sep 12;10(9): - PubMed
  11. Nature. 2011 Jul 20;475(7356):316-23 - PubMed
  12. Nat Commun. 2015 Jun 15;6:7159 - PubMed
  13. Sci Transl Med. 2010 Jun 23;2(37):37ra44 - PubMed
  14. Annu Rev Biophys. 2017 May 22;46:295-315 - PubMed
  15. Proc Natl Acad Sci U S A. 2013 Jul 9;110(28):11349-54 - PubMed
  16. J Cell Biol. 2008 Jan 14;180(1):39-50 - PubMed
  17. Mol Biol Cell. 2016 Dec 15;27(25):4011-4020 - PubMed
  18. Nature. 2018 Jul;559(7712):54-60 - PubMed
  19. Proc Natl Acad Sci U S A. 2016 Jan 5;113(1):E32-40 - PubMed
  20. Nat Cell Biol. 2014 Apr;16(4):376-81 - PubMed
  21. Traffic. 2007 Nov;8(11):1521-9 - PubMed
  22. Annu Rev Biophys. 2010;39:471-89 - PubMed
  23. Biophys J. 2005 Oct;89(4):2855-64 - PubMed
  24. Nature. 2011 Jun 08;474(7350):179-83 - PubMed
  25. J Biomech Eng. 2017 Feb 1;139(2): - PubMed
  26. Biophys J. 2012 Nov 21;103(10):2060-70 - PubMed
  27. J Cell Biol. 2014 Mar 3;204(5):669-82 - PubMed
  28. Trends Cancer. 2018 Apr;4(4):320-331 - PubMed
  29. Nat Mater. 2013 Dec;12(12):1154-62 - PubMed
  30. Curr Biol. 2017 Jan 23;27(2):210-223 - PubMed
  31. Nature. 2018 Jul;559(7712):61-66 - PubMed
  32. Proc Natl Acad Sci U S A. 2007 Oct 2;104(40):15619-24 - PubMed
  33. Cell. 2007 Feb 23;128(4):635-8 - PubMed
  34. Science. 2016 Apr 15;352(6283):359-62 - PubMed
  35. Science. 2003 Dec 5;302(5651):1704-9 - PubMed
  36. Circ Res. 2008 Jun 6;102(11):1307-18 - PubMed
  37. Nucleic Acids Res. 2017 Sep 29;45(17):9917-9930 - PubMed
  38. J Cell Biol. 2013 Jun 24;201(7):1069-84 - PubMed
  39. J Cell Biol. 2018 May 7;217(5):1571-1587 - PubMed
  40. Mol Biol Cell. 2017 Jun 1;28(11):1580-1589 - PubMed
  41. Sci Rep. 2015 Nov 23;5:16895 - PubMed
  42. Proc Natl Acad Sci U S A. 2018 Aug 21;115(34):8581-8586 - PubMed
  43. Science. 2013 Aug 30;341(6149):1240104 - PubMed
  44. Cell Mol Bioeng. 2014 Sep 1;7(3):293-306 - PubMed
  45. Nat Rev Mol Cell Biol. 2015 Apr;16(4):245-57 - PubMed
  46. Nucleic Acids Res. 2016 Apr 20;44(7):3031-44 - PubMed
  47. Nat Rev Mol Cell Biol. 2014 Dec;15(12):813-24 - PubMed
  48. Curr Opin Cell Biol. 2016 Jun;40:98-105 - PubMed
  49. Nat Mater. 2016 Dec;15(12):1287-1296 - PubMed
  50. Proc Natl Acad Sci U S A. 2010 Mar 16;107(11):4872-7 - PubMed
  51. Cell. 2015 Sep 24;163(1):160-73 - PubMed
  52. J Cell Sci. 2010 Jul 1;123(Pt 13):2207-17 - PubMed
  53. Nat Commun. 2015 Jan 22;6:6138 - PubMed
  54. Cell. 2016 Mar 10;164(6):1110-1121 - PubMed
  55. Genes Dev. 2008 Apr 1;22(7):832-53 - PubMed
  56. Mol Biol Cell. 2018 Sep 26;:mbcE18040256 - PubMed

MeSH terms

Publication Types

Grant support