Display options
Share it on

Trop Med Infect Dis. 2019 Feb 27;4(1). doi: 10.3390/tropicalmed4010041.

Sowing the Seeds of a Pandemic? Mammalian Pathogenicity and Transmissibility of H1 Variant Influenza Viruses from the Swine Reservoir.

Tropical medicine and infectious disease

Joanna A Pulit-Penaloza, Jessica A Belser, Terrence M Tumpey, Taronna R Maines

Affiliations

  1. Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA. [email protected].
  2. Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA. [email protected].
  3. Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA. [email protected].
  4. Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA. [email protected].

PMID: 30818793 PMCID: PMC6473686 DOI: 10.3390/tropicalmed4010041

Abstract

Emergence of genetically and antigenically diverse strains of influenza to which the human population has no or limited immunity necessitates continuous risk assessments to determine the likelihood of these viruses acquiring adaptations that facilitate sustained human-to-human transmission. As the North American swine H1 virus population has diversified over the last century by means of both antigenic drift and shift, in vivo assessments to study multifactorial traits like mammalian pathogenicity and transmissibility of these emerging influenza viruses are critical. In this review, we examine genetic, molecular, and pathogenicity and transmissibility data from a panel of contemporary North American H1 subtype swine-origin viruses isolated from humans, as compared to H1N1 seasonal and pandemic viruses, including the reconstructed 1918 virus. We present side-by-side analyses of experiments performed in the mouse and ferret models using consistent experimental protocols to facilitate enhanced interpretation of in vivo data. Contextualizing these analyses in a broader context permits a greater appreciation of the role that in vivo risk assessment experiments play in pandemic preparedness. Collectively, we find that despite strain-specific heterogeneity among swine-origin H1 viruses, contemporary swine viruses isolated from humans possess many attributes shared by prior pandemic strains, warranting heightened surveillance and evaluation of these zoonotic viruses.

Keywords: ferret; influenza; mouse; pandemic; swine; variant

References

  1. J Virol. 1999 Oct;73(10):8851-6 - PubMed
  2. J Virol. 2000 Sep;74(18):8502-12 - PubMed
  3. Clin Otolaryngol Allied Sci. 2002 Jun;27(3):135-9 - PubMed
  4. Proc Natl Acad Sci U S A. 2004 Mar 2;101(9):3166-71 - PubMed
  5. Microbiol Rev. 1992 Mar;56(1):152-79 - PubMed
  6. J Virol. 2005 Sep;79(17):11533-6 - PubMed
  7. J Virol. 2005 Sep;79(18):11788-800 - PubMed
  8. Science. 2005 Oct 7;310(5745):77-80 - PubMed
  9. Emerg Infect Dis. 2006 Jan;12(1):23-8 - PubMed
  10. Proc Natl Acad Sci U S A. 2006 Jun 27;103(26):9988-92 - PubMed
  11. J Virol. 2006 Aug;80(16):7976-83 - PubMed
  12. Proc Natl Acad Sci U S A. 2006 Aug 8;103(32):12121-6 - PubMed
  13. Nature. 2006 Oct 5;443(7111):578-81 - PubMed
  14. J Membr Biol. 2006;211(3):139-50 - PubMed
  15. Science. 2007 Feb 2;315(5812):655-9 - PubMed
  16. Clin Infect Dis. 2007 Apr 15;44(8):1084-8 - PubMed
  17. J R Soc Interface. 2007 Aug 22;4(15):755-62 - PubMed
  18. J Virol. 2007 Jul;81(13):6890-8 - PubMed
  19. J Virol. 2007 Oct;81(20):11139-47 - PubMed
  20. PLoS Pathog. 2007 Oct 5;3(10):1414-21 - PubMed
  21. Antivir Ther. 2007;12(4 Pt B):581-91 - PubMed
  22. Proc Natl Acad Sci U S A. 2008 Feb 26;105(8):2800-5 - PubMed
  23. Proc Natl Acad Sci U S A. 2008 Feb 26;105(8):3064-9 - PubMed
  24. PLoS Pathog. 2009 Jan;5(1):e1000252 - PubMed
  25. Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3366-71 - PubMed
  26. PLoS Pathog. 2009 May;5(5):e1000424 - PubMed
  27. Science. 2009 Jul 10;325(5937):197-201 - PubMed
  28. Zoonoses Public Health. 2009 Aug;56(6-7):326-37 - PubMed
  29. Nature. 2009 Jun 25;459(7250):1122-5 - PubMed
  30. Science. 2009 Jul 24;325(5939):484-7 - PubMed
  31. Science. 2009 Jul 24;325(5939):481-3 - PubMed
  32. Proc Natl Acad Sci U S A. 2009 Jul 14;106(28):11709-12 - PubMed
  33. Virus Genes. 2009 Oct;39(2):176-85 - PubMed
  34. Nature. 2009 Aug 20;460(7258):1021-5 - PubMed
  35. Adv Virus Res. 2009;73:55-97 - PubMed
  36. J Virol. 2009 Oct;83(20):10417-26 - PubMed
  37. Nat Biotechnol. 2009 Sep;27(9):797-9 - PubMed
  38. J Exp Med. 1931 Jul 31;54(3):373-85 - PubMed
  39. PLoS One. 2009 Nov 06;4(11):e7788 - PubMed
  40. BMC Vet Res. 2010 Jan 27;6:4 - PubMed
  41. J Virol. 2010 May;84(9):4194-203 - PubMed
  42. J Virol. 2010 May;84(9):4395-406 - PubMed
  43. J Virol. 2010 May;84(10):4936-45 - PubMed
  44. J Virol. 2010 Nov;84(22):12069-74 - PubMed
  45. J Microbiol. 2010 Oct;48(5):657-62 - PubMed
  46. J Virol. 2011 Feb;85(4):1563-72 - PubMed
  47. Virology. 2011 Apr 10;412(2):401-10 - PubMed
  48. Virology. 2011 May 10;413(2):169-82 - PubMed
  49. Dis Model Mech. 2011 Sep;4(5):575-9 - PubMed
  50. J Virol. 2011 Nov;85(21):11235-41 - PubMed
  51. J Virol. 2011 Dec;85(24):13195-203 - PubMed
  52. PLoS One. 2011;6(9):e25091 - PubMed
  53. Virology. 2012 Jan 5;422(1):151-60 - PubMed
  54. Proc Natl Acad Sci U S A. 2012 Mar 6;109(10):3944-9 - PubMed
  55. J Virol. 2012 Jul;86(13):7118-25 - PubMed
  56. J Virol. 2012 Sep;86(18):9666-74 - PubMed
  57. PLoS Pathog. 2012;8(7):e1002791 - PubMed
  58. Lab Anim. 2013 Jan;47(1):74-7 - PubMed
  59. PLoS One. 2013;8(3):e58337 - PubMed
  60. J Virol. 2013 Nov;87(22):12433-46 - PubMed
  61. J Virol. 2014 Feb;88(4):2260-7 - PubMed
  62. J Virol. 2014 Apr;88(8):4600-4 - PubMed
  63. Curr Top Microbiol Immunol. 2014;385:275-305 - PubMed
  64. Curr Top Microbiol Immunol. 2014;385:205-18 - PubMed
  65. Curr Top Microbiol Immunol. 2014;385:119-36 - PubMed
  66. Nat Rev Microbiol. 2014 Dec;12(12):822-31 - PubMed
  67. J Virol. 2015 Mar;89(5):2831-41 - PubMed
  68. J Virol. 2015 Mar;89(6):2990-4 - PubMed
  69. Molecules. 2015 Jun 05;20(6):10415-34 - PubMed
  70. Elife. 2015 Sep 02;4:null - PubMed
  71. Microb Pathog. 2015 Dec;89:62-72 - PubMed
  72. Nature. 2015 Oct 1;526(7571):122-5 - PubMed
  73. Future Virol. 2015;10(9):1033-1047 - PubMed
  74. J Virol. 2015 Nov 25;90(3):1569-77 - PubMed
  75. Proc Natl Acad Sci U S A. 2016 Jan 12;113(2):392-7 - PubMed
  76. Proc Natl Acad Sci U S A. 2016 Feb 9;113(6):1636-41 - PubMed
  77. Elife. 2016 Apr 15;5:e12217 - PubMed
  78. Sci Rep. 2016 Jun 02;6:27067 - PubMed
  79. Microbiol Mol Biol Rev. 2016 Jul 13;80(3):733-44 - PubMed
  80. Emerg Infect Dis. 2016 Nov;22(11):1930-1936 - PubMed
  81. Elife. 2016 Nov 11;5: - PubMed
  82. mSphere. 2016 Dec 14;1(6): - PubMed
  83. Virology. 2017 Feb;502:114-122 - PubMed
  84. Virology. 1989 Nov;173(1):317-22 - PubMed
  85. Vaccine. 2017 Mar 7;35(10):1455-1463 - PubMed
  86. Lancet. 2017 Jun 3;389(10085):2172-2174 - PubMed
  87. J Gen Virol. 2017 Aug;98(8):2001-2010 - PubMed
  88. Viruses. 2017 Aug 08;9(8): - PubMed
  89. J Infect Dis. 2017 Sep 15;216(suppl_4):S493-S498 - PubMed
  90. Int J Mol Sci. 2017 Dec 29;19(1):null - PubMed
  91. Virology. 2018 May;518:45-54 - PubMed
  92. J Virol. 2018 May 14;92(11): - PubMed
  93. Trends Microbiol. 2018 Oct;26(10):841-853 - PubMed
  94. Emerg Infect Dis. 2018 Jun;24(6):965-971 - PubMed
  95. J Virol. 2018 Jul 31;92(16): - PubMed
  96. J Virol. 2018 Oct 29;92(22): - PubMed
  97. Nat Rev Microbiol. 2019 Jan;17(2):67-81 - PubMed
  98. Am J Epidemiol. 2018 Dec 1;187(12):2498-2502 - PubMed
  99. J Appl Physiol (1985). 1985 Feb;58(2):564-70 - PubMed
  100. J Infect Dis. 1977 Dec;136 Suppl:S369-75 - PubMed
  101. J Gen Virol. 1994 Sep;75 ( Pt 9):2183-8 - PubMed
  102. J Virol. 1993 Apr;67(4):1761-4 - PubMed
  103. Cell. 1993 May 21;73(4):823-32 - PubMed
  104. Science. 1997 Mar 21;275(5307):1793-6 - PubMed

Publication Types