Display options
Share it on

BMC Genomics. 2019 Mar 07;20(1):180. doi: 10.1186/s12864-019-5566-8.

Reconstruction of evolutionary trajectories of chromosomes unraveled independent genomic repatterning between Triticeae and Brachypodium.

BMC genomics

Zhenyi Wang, Jinpeng Wang, Yuxin Pan, Tianyu Lei, Weina Ge, Li Wang, Lan Zhang, Yuxian Li, Kanglu Zhao, Tao Liu, Xiaoming Song, Jiaqi Zhang, Jigao Yu, Jingjing Hu, Xiyin Wang

Affiliations

  1. School of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China.
  2. Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, 063210, Hebei, China.
  3. College of Science, North China University of Science and Technology, Tangshan, 063210, Hebei, China.
  4. School of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China. [email protected].
  5. Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, 063210, Hebei, China. [email protected].

PMID: 30845910 PMCID: PMC6407190 DOI: 10.1186/s12864-019-5566-8

Abstract

BACKGROUND: After polyploidization, a genome may experience large-scale genome-repatterning, featuring wide-spread DNA rearrangement and loss, and often chromosome number reduction. Grasses share a common tetraploidization, after which the originally doubled chromosome numbers reduced to different chromosome numbers among them. A telomere-centric reduction model was proposed previously to explain chromosome number reduction. With Brachpodium as an intermediate linking different major lineages of grasses and a model plant of the Pooideae plants, we wonder whether it mediated the evolution from ancestral grass karyotype to Triticeae karyotype.

RESULTS: By inferring the homology among Triticeae, rice, and Brachpodium chromosomes, we reconstructed the evolutionary trajectories of the Triticeae chromosomes. By performing comparative genomics analysis with rice as a reference, we reconstructed the evolutionary trajectories of Pooideae plants, including Ae. Tauschii (2n = 14, DD), barley (2n = 14), Triticum turgidum (2n = 4x = 28, AABB), and Brachypodium (2n = 10). Their extant Pooidea and Brachypodium chromosomes were independently produced after sequential nested chromosome fusions in the last tens of millions of years, respectively, after their split from rice. More frequently than would be expected by chance, in Brachypodium, the 'invading' and 'invaded' chromosomes are homoeologs, originating from duplication of a common ancestral chromosome, that is, with more extensive DNA-level correspondence to one another than random chromosomes, nested chromosome fusion events between homoeologs account for three of seven cases in Brachypodium (P-value≈0.00078). However, this phenomenon was not observed during the formation of other Pooideae chromosomes.

CONCLUSIONS: Notably, we found that the Brachypodium chromosomes formed through exclusively distinctive trajectories from those of Pooideae plants, and were well explained by the telomere-centric model. Our work will contribute to understanding the structural and functional innovation of chromosomes in different Pooideae lineages and beyond.

Keywords: Barley; Brachypodium; Chromosome; Grass; Telomere; Wheat

References

  1. Genetics. 1999 Dec;153(4):1547-60 - PubMed
  2. Science. 2000 Jun 2;288(5471):1602-3 - PubMed
  3. Plant Physiol. 2001 Dec;127(4):1539-55 - PubMed
  4. Nat Rev Genet. 2002 Jun;3(6):429-41 - PubMed
  5. Nature. 2003 Mar 27;422(6930):433-8 - PubMed
  6. Funct Integr Genomics. 2004 Mar;4(1):26-33 - PubMed
  7. Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9903-8 - PubMed
  8. New Phytol. 2005 Mar;165(3):937-46 - PubMed
  9. Nature. 2005 Apr 7;434(7034):724-31 - PubMed
  10. Proc Natl Acad Sci U S A. 2005 Sep 13;102(37):13206-11 - PubMed
  11. Plant Mol Biol. 2005 Sep;59(1):63-74 - PubMed
  12. Proc Natl Acad Sci U S A. 2006 Mar 28;103(13):5224-9 - PubMed
  13. Genome Res. 2006 Jul;16(7):934-46 - PubMed
  14. BMC Bioinformatics. 2006 Oct 12;7:447 - PubMed
  15. Science. 2007 Jun 29;316(5833):1862-6 - PubMed
  16. Nat Protoc. 2007;2(7):1661-74 - PubMed
  17. Funct Integr Genomics. 2008 May;8(2):135-47 - PubMed
  18. Int J Plant Genomics. 2008;2008:536104 - PubMed
  19. Science. 2008 Apr 25;320(5875):486-8 - PubMed
  20. Proc Natl Acad Sci U S A. 2008 Jul 15;105(28):9691-6 - PubMed
  21. Genome Res. 2008 Dec;18(12):1944-54 - PubMed
  22. Plant Mol Biol. 2009 May;70(1-2):47-61 - PubMed
  23. Proc Natl Acad Sci U S A. 1991 Oct 15;88(20):9051-5 - PubMed
  24. PLoS Genet. 2009 May;5(5):e1000485 - PubMed
  25. BMC Res Notes. 2009 May 27;2:93 - PubMed
  26. Proc Natl Acad Sci U S A. 2009 Sep 1;106(35):14908-13 - PubMed
  27. Cell. 2009 Sep 18;138(6):1067-82 - PubMed
  28. Funct Integr Genomics. 2010 May;10(2):293-306 - PubMed
  29. Nature. 2010 Feb 11;463(7282):763-8 - PubMed
  30. PLoS One. 2010 Apr 19;5(4):e10065 - PubMed
  31. BMC Genomics. 2010 May 19;11:313 - PubMed
  32. Genome Res. 2010 Nov;20(11):1545-57 - PubMed
  33. Trends Genet. 2011 Jun;27(6):207-16 - PubMed
  34. PLoS Genet. 2011 Jul;7(7):e1002190 - PubMed
  35. Nature. 2012 Nov 29;491(7426):711-6 - PubMed
  36. Nature. 2012 Nov 29;491(7426):705-10 - PubMed
  37. Nature. 2013 Apr 4;496(7443):91-5 - PubMed
  38. Nature. 2013 Apr 4;496(7443):87-90 - PubMed
  39. Genome Biol Evol. 2014 Jan;6(1):12-33 - PubMed
  40. New Phytol. 2015 Jan;205(1):378-89 - PubMed
  41. Mol Plant. 2015 Jun;8(6):885-98 - PubMed
  42. Annu Rev Genet. 2015;49:1-20 - PubMed
  43. Nat Genet. 2015 Dec;47(12):1435-42 - PubMed
  44. Trends Plant Sci. 2016 Sep;21(9):749-757 - PubMed
  45. Nat Genet. 2017 Apr;49(4):490-496 - PubMed
  46. Nature. 2017 Apr 26;544(7651):427-433 - PubMed
  47. Science. 2017 Jul 7;357(6346):93-97 - PubMed
  48. Methods Mol Biol. 2018;1667:1-19 - PubMed
  49. Nature. 2017 Nov 23;551(7681):498-502 - PubMed
  50. Nat Plants. 2017 Dec;3(12):946-955 - PubMed
  51. Nat Commun. 2017 Dec 19;8(1):2184 - PubMed
  52. Mob DNA. 2017 Dec 20;8:22 - PubMed
  53. Plant Biotechnol J. 2018 Dec;16(12):2077-2087 - PubMed
  54. Nature. 2018 May;557(7705):424-428 - PubMed
  55. Genome Res. 1998 Nov;8(11):1113-30 - PubMed

MeSH terms

Publication Types

Grant support