Display options
Share it on

Mol Microbiol. 2019 Jun;111(6):1558-1570. doi: 10.1111/mmi.14237. Epub 2019 Apr 06.

Systematic analysis of Type I-E Escherichia coli CRISPR-Cas PAM sequences ability to promote interference and primed adaptation.

Molecular microbiology

Olga Musharova, Vasily Sitnik, Marnix Vlot, Ekaterina Savitskaya, Kirill A Datsenko, Andrey Krivoy, Ivan Fedorov, Ekaterina Semenova, Stan J J Brouns, Konstantin Severinov

Affiliations

  1. Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia.
  2. Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia.
  3. Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Stippeneng 4, Wageningen, 6708 WE, The Netherlands.
  4. Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA.
  5. Waksman Institute, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
  6. Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, The Netherlands.

PMID: 30875129 PMCID: PMC6568314 DOI: 10.1111/mmi.14237

Abstract

CRISPR interference occurs when a protospacer recognized by the CRISPR RNA is destroyed by Cas effectors. In Type I CRISPR-Cas systems, protospacer recognition can lead to «primed adaptation» - acquisition of new spacers from in cis located sequences. Type I CRISPR-Cas systems require the presence of a trinucleotide protospacer adjacent motif (PAM) for efficient interference. Here, we investigated the ability of each of 64 possible trinucleotides located at the PAM position to induce CRISPR interference and primed adaptation by the Escherichia coli Type I-E CRISPR-Cas system. We observed clear separation of PAM variants into three groups: those unable to cause interference, those that support rapid interference and those that lead to reduced interference that occurs over extended periods of time. PAM variants unable to support interference also did not support primed adaptation; those that supported rapid interference led to no or low levels of adaptation, while those that caused attenuated levels of interference consistently led to highest levels of adaptation. The results suggest that primed adaptation is fueled by the products of CRISPR interference. Extended over time interference with targets containing «attenuated» PAM variants provides a continuous source of new spacers leading to high overall level of spacer acquisition.

© 2019 The Authors. Molecular Microbiology Published by John Wiley & Sons Ltd.

References

  1. PLoS One. 2012;7(4):e35888 - PubMed
  2. Cell Host Microbe. 2019 Feb 13;25(2):250-260.e4 - PubMed
  3. J Biol Chem. 2013 Aug 2;288(31):22184-92 - PubMed
  4. J Bacteriol. 2008 Feb;190(4):1390-400 - PubMed
  5. RNA Biol. 2013 May;10(5):716-25 - PubMed
  6. RNA Biol. 2013 May;10(5):792-802 - PubMed
  7. Nucleic Acids Res. 2015 Jul 13;43(12):6049-61 - PubMed
  8. Bioinformatics. 2010 Mar 1;26(5):589-95 - PubMed
  9. Mol Cell. 2016 Apr 7;62(1):137-47 - PubMed
  10. Curr Opin Microbiol. 2017 Jun;37:67-78 - PubMed
  11. Cell. 2018 Nov 1;175(4):934-946.e15 - PubMed
  12. Front Mol Biosci. 2016 Aug 31;3:45 - PubMed
  13. Nat Rev Microbiol. 2017 Mar;15(3):169-182 - PubMed
  14. Nature. 2016 Feb 25;530(7591):499-503 - PubMed
  15. Genetics. 2017 Aug;206(4):1727-1738 - PubMed
  16. Cell. 2015 Nov 5;163(4):854-65 - PubMed
  17. Science. 2017 Apr 7;356(6333): - PubMed
  18. Science. 2008 Dec 19;322(5909):1843-5 - PubMed
  19. Mol Cell. 2015 Apr 2;58(1):60-70 - PubMed
  20. Nucleic Acids Res. 2014 Jul;42(13):8516-26 - PubMed
  21. Proc Natl Acad Sci U S A. 2011 Jun 21;108(25):10098-103 - PubMed
  22. Science. 2007 Mar 23;315(5819):1709-12 - PubMed
  23. MBio. 2018 Dec 4;9(6): - PubMed
  24. Mol Cell. 2012 Jun 8;46(5):606-15 - PubMed
  25. Proc Natl Acad Sci U S A. 2014 Jul 8;111(27):9798-803 - PubMed
  26. Proc Natl Acad Sci U S A. 2014 Apr 22;111(16):E1629-38 - PubMed
  27. Nat Struct Mol Biol. 2011 May;18(5):529-36 - PubMed
  28. Nature. 2015 Apr 23;520(7548):505-510 - PubMed
  29. Proc Natl Acad Sci U S A. 2014 Nov 18;111(46):16359-64 - PubMed
  30. Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6640-5 - PubMed
  31. Nature. 2011 Sep 21;477(7365):486-489 - PubMed
  32. Nucleic Acids Res. 2018 May 4;46(8):4087-4098 - PubMed
  33. PLoS Genet. 2013;9(9):e1003742 - PubMed
  34. Mol Cell. 2016 Nov 17;64(4):826-834 - PubMed
  35. Molecules. 2019 Feb 21;24(4):null - PubMed
  36. Curr Opin Struct Biol. 2014 Feb;24:106-14 - PubMed
  37. Cell. 2015 Nov 5;163(4):840-53 - PubMed
  38. Mol Cell. 2016 Mar 17;61(6):797-808 - PubMed
  39. Biol Direct. 2006 Mar 16;1:7 - PubMed
  40. Science. 2008 Aug 15;321(5891):960-4 - PubMed
  41. Nucleic Acids Res. 2014 May;42(9):5907-16 - PubMed
  42. Science. 2012 Aug 17;337(6096):816-21 - PubMed
  43. Nat Rev Microbiol. 2015 Nov;13(11):722-36 - PubMed
  44. Virology. 2012 Dec 20;434(2):202-9 - PubMed
  45. Bioinformatics. 2006 Jun 15;22(12):1540-2 - PubMed
  46. Nature. 2015 Nov 26;527(7579):535-8 - PubMed
  47. Nat Commun. 2012 Jul 10;3:945 - PubMed
  48. Microbiology. 2009 Mar;155(Pt 3):733-40 - PubMed
  49. Bioinformatics. 2009 Aug 15;25(16):2078-9 - PubMed
  50. Mol Cell. 2016 Sep 1;63(5):852-64 - PubMed
  51. Proc Natl Acad Sci U S A. 2016 Jul 5;113(27):7626-31 - PubMed
  52. Trends Biochem Sci. 2009 Aug;34(8):401-7 - PubMed
  53. Nucleic Acids Res. 2015 Dec 15;43(22):10831-47 - PubMed
  54. Nucleic Acids Res. 2012 Jul;40(12):5569-76 - PubMed
  55. Science. 2017 Sep 15;357(6356):1113-1118 - PubMed
  56. Proc Natl Acad Sci U S A. 2014 May 6;111(18):6618-23 - PubMed

Substances

MeSH terms

Publication Types

Grant support