Display options
Share it on

Antioxidants (Basel). 2019 May 15;8(5). doi: 10.3390/antiox8050133.

The Protective Effect of Alpha-Mangostin against Cisplatin-Induced Cell Death in LLC-PK1 Cells is Associated to Mitochondrial Function Preservation.

Antioxidants (Basel, Switzerland)

Laura María Reyes-Fermín, Sabino Hazael Avila-Rojas, Omar Emiliano Aparicio-Trejo, Edilia Tapia, Isabel Rivero, José Pedraza-Chaverri

Affiliations

  1. Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico. [email protected].
  2. Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico. [email protected].
  3. Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico. [email protected].
  4. Department of Nephrology and Laboratory of Renal Pathophysiology, National Institute of Cardiology "Ignacio Chávez", Mexico City 14080, Mexico. [email protected].
  5. Department of Pharmacy, Faculty of Chemistry, UNAM, Mexico City 04510, Mexico. [email protected].
  6. Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico. [email protected].

PMID: 31096625 PMCID: PMC6562511 DOI: 10.3390/antiox8050133

Abstract

Cis-dichlorodiammineplatinum II (CDDP) is a chemotherapeutic agent that induces nephrotoxicity by different mechanisms, including oxidative stress, mitochondrial dysfunction, autophagy, and endoplasmic reticulum stress. This study aimed to evaluate if the protective effects of the antioxidant alpha-mangostin (αM) in CDDP-induced damage in proximal tubule Lilly laboratory culture porcine kidney (LLC-PK1) cells, are related to mitochondrial function preservation. It was found that αM co-incubation prevented CDDP-induced cell death. Furthermore, αM prevented the CDDP-induced decrease in cell respiratory states, in the maximum capacity of the electron transfer system (E) and in the respiration associated to oxidative phosphorylation (OXPHOS). CDDP also decreased the protein levels of voltage dependence anion channel (VDAC) and mitochondrial complex subunits, which together with the reduction in E, the mitofusin 2 decrease and the mitochondrial network fragmentation observed by MitoTracker Green, suggest the mitochondrial morphology alteration and the decrease in mitochondrial mass induced by CDDP. CDDP also induced the reduction in mitochondrial biogenesis observed by transcription factor A, mitochondria (TFAM) decreased protein-level and the increase in mitophagy. All these changes were prevented by αM. Taken together, our results imply that αM's protective effects in CDDP-induced toxicity in LLC-PK1 cells are associated to mitochondrial function preservation.

Keywords: alpha-mangostin; cisplatin; mitochondria function; mitophagy; nephrotoxicity

References

  1. J Chromatogr B Analyt Technol Biomed Life Sci. 2003 Aug 5;793(1):141-50 - PubMed
  2. J Biol Chem. 1951 Nov;193(1):265-75 - PubMed
  3. J Am Soc Nephrol. 2005 Jul;16(7):1985-92 - PubMed
  4. Biochemistry. 2006 Jul 25;45(29):8959-71 - PubMed
  5. Am J Physiol Renal Physiol. 2008 Apr;294(4):F777-87 - PubMed
  6. Food Chem Toxicol. 2008 Oct;46(10):3227-39 - PubMed
  7. Circ Res. 2008 Nov 21;103(11):1232-40 - PubMed
  8. Drug Chem Toxicol. 2009;32(4):344-52 - PubMed
  9. Free Radic Res. 2009;43(11):1122-32 - PubMed
  10. Mitochondrion. 2010 Mar;10(2):151-7 - PubMed
  11. Nat Cell Biol. 2010 Feb;12(2):119-31 - PubMed
  12. Anal Biochem. 2010 Jun 15;401(2):318-20 - PubMed
  13. Chem Biol Interact. 2010 Oct 6;188(1):144-50 - PubMed
  14. Am J Pathol. 2012 Feb;180(2):517-25 - PubMed
  15. Pharmacol Ther. 2012 Oct;136(1):35-55 - PubMed
  16. J Bras Nefrol. 2013 Oct-Dec;35(4):332-40 - PubMed
  17. Curr Pharm Des. 2014;20(35):5619-33 - PubMed
  18. Arch Toxicol. 2014 Jun;88(6):1249-56 - PubMed
  19. J Pharmacol Exp Ther. 2015 Feb;352(2):346-57 - PubMed
  20. J Cell Physiol. 2015 Jul;230(7):1413-20 - PubMed
  21. PLoS One. 2015 Apr 15;10(4):e0124775 - PubMed
  22. Sci Rep. 2016 Feb 18;6:21018 - PubMed
  23. Kidney Int. 2016 Apr;89(4):779-91 - PubMed
  24. Semin Nephrol. 2016 Jan;36(1):8-16 - PubMed
  25. J Neuroimmunol. 2016 Aug 15;297:20-7 - PubMed
  26. PLoS One. 2016 Jul 27;11(7):e0158716 - PubMed
  27. Nutr Metab (Lond). 2016 Dec 1;13:88 - PubMed
  28. Oxid Med Cell Longev. 2016;2016:7981397 - PubMed
  29. Chin J Nat Med. 2017 Feb;15(2):81-93 - PubMed
  30. J Nephrol. 2018 Feb;31(1):15-25 - PubMed
  31. Oncotarget. 2017 Mar 28;8(13):20988-21000 - PubMed
  32. Oncotarget. 2017 Jul 18;8(29):47425-47439 - PubMed
  33. EMBO J. 2017 Jul 3;36(13):1811-1836 - PubMed
  34. Food Chem Toxicol. 2017 Sep;107(Pt A):373-385 - PubMed
  35. Food Chem Toxicol. 2017 Nov;109(Pt 1):102-122 - PubMed
  36. Front Pharmacol. 2017 Aug 15;8:545 - PubMed
  37. Food Chem Toxicol. 2017 Nov;109(Pt 1):143-154 - PubMed
  38. ACS Chem Biol. 2017 Nov 17;12(11):2737-2745 - PubMed
  39. J Nephropathol. 2017 Jul;6(3):254-263 - PubMed
  40. J Bioenerg Biomembr. 2017 Oct;49(5):413-422 - PubMed
  41. Drug Deliv. 2018 Nov;25(1):546-554 - PubMed
  42. Clin J Oncol Nurs. 2018 Apr 1;22(2):175-183 - PubMed
  43. PLoS One. 2018 Mar 28;13(3):e0193473 - PubMed
  44. Pharmacol Res. 2018 Sep;135:1-11 - PubMed
  45. Biomed Pharmacother. 2018 Oct;106:896-901 - PubMed
  46. Tohoku J Exp Med. 2018;246(1):1-8 - PubMed
  47. EBioMedicine. 2018 Oct;36:266-280 - PubMed
  48. Cell Death Dis. 2018 Nov 1;9(11):1113 - PubMed
  49. Free Radic Biol Med. 2019 Jan;130:379-396 - PubMed
  50. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2018 Oct 28;43(10):1089-1096 - PubMed
  51. Cell Tissue Res. 1994 Aug;277(2):297-307 - PubMed
  52. In Vitro. 1976 Oct;12(10):670-7 - PubMed
  53. J Am Soc Nephrol. 1998 Oct;9(10):1767-76 - PubMed

Publication Types

Grant support