Display options
Share it on

Risk Anal. 2019 Oct;39(10):2295-2315. doi: 10.1111/risa.13324. Epub 2019 May 02.

A Review of Recent Advances in Benchmark Dose Methodology.

Risk analysis : an official publication of the Society for Risk Analysis

Signe M Jensen, Felix M Kluxen, Christian Ritz

Affiliations

  1. Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark.
  2. ADAMA Deutschland GmbH, Cologne, Germany.
  3. Department of Nutrition, Sports and Exercise, University of Copenhagen, Copenhagen, Denmark.

PMID: 31046141 DOI: 10.1111/risa.13324

Abstract

In this review, recent methodological developments for the benchmark dose (BMD) methodology are summarized. Specifically, we introduce the advances for the main steps in BMD derivation: selecting the procedure for defining a BMD from a predefined benchmark response (BMR), setting a BMR, selecting a dose-response model, and estimating the corresponding BMD lower limit (BMDL). Although the last decade has shown major progress in the development of BMD methodology, there is still room for improvement. Remaining challenges are the implementation of new statistical methods in user-friendly software and the lack of consensus about how to derive the BMDL.

© 2019 Society for Risk Analysis.

Keywords: BMDL; hybrid approach; model averaging; risk assessment; simultaneous inference

References

  1. Al-Saidy, O. M., Piegorsch, W. W., West, R. W., & Nitcheva, D. K. (2003). Confidence bands for low-dose risk estimation with quantal response data. Biometrics, 59(4), 1056-1062. https://doi.org/10.1111/j.0006-341X.2003.00121.x - PubMed
  2. Bailer, A. J., Noble, R. B., & Wheeler, M. W. (2005). Model uncertainty and risk estimation for experimental studies of quantal responses. Risk Analysis, 25(2), 291-299. https://doi.org/10.1111/j.1539-6924.2005.00590.x - PubMed
  3. Bailer, A. J., & Oris, J. T. (1997). Estimating inhibition concentrations for different response scales using generalized linear models. Environmental Toxicology and Chemistry, 16(7), 1554-1559. https://doi.org/10.1002/etc.5620160732 - PubMed
  4. Bailer, A. J., & Oris, J. T. (2000). Defining the baseline for inhibition concentration calculations for hormetic hazards. Journal of Applied Toxicology, 20(2), 121-125. https://doi.org/10.1002/(SICI)1099-1263(200003/04)20:2<121::AID-JAT642>3.0.CO;2-B - PubMed
  5. Bhattacharya, R., & Lin, L. (2010). An adaptive nonparametric method in benchmark analysis for bioassay and environmental studies. Statistics & Probability Letters, 80(23-24), 1947-1953. https://doi.org/10.1016/J.SPL.2010.08.024 - PubMed
  6. Bhattacharya, R., & Lin, L. (2011). Nonparametric benchmark analysis in risk assessment: A comparative study by simulation and data analysis. Sankhya B, 73(1), 144-163. https://doi.org/10.1007/s13571-011-0019-7 - PubMed
  7. Buckland, S. T., Burnham, K. P., & Augustin, N. H. (1997). Model selection: An integral part of inference. Biometrics, 53(2), 603-618. https://doi.org/10.2307/2533961 - PubMed
  8. Buckley, B. E., & Piegorsch, W. W. (2008). Simultaneous confidence bands for Abbott-adjusted quantal response models. Statistical Methodology, 5(3), 209-219. https://doi.org/10.1016/j.stamet.2007.08.001 - PubMed
  9. Buckley, B. E., Piegorsch, W. W., & West, R. W. (2009). Confidence limits on one-stage model parameters in benchmark risk assessment. Environmental and Ecological Statistics, 16(1), 53-62. https://doi.org/10.1007/s10651-007-0076-2 - PubMed
  10. Budtz-Jørgensen, E., Keiding, N., & Grandjean, P. (2001). Benchmark dose calculation from epidemiological data. Biometrics, 57(3), 698-706. https://doi.org/10.1111/j.0006-341X.2001.00698.x - PubMed
  11. Burgoon, L. D., & Zacharewski, T. R. (2008). Automated quantitative dose-response modeling and point of departure determination for large toxicogenomic and high-throughput screening data sets. Toxicological Sciences, 104(2), 412-418. https://doi.org/10.1093/toxsci/kfn083 - PubMed
  12. Carr, G. J., Bailer, A. J., Rawlings, J. M., & Belanger, S. E. (2018). On the impact of sample size on median lethal concentration estimation in acute fish toxicity testing: Is n =  7/group enough? Environmental Toxicology and Chemistry, 37(6), 1565-1578. https://doi.org/10.1002/etc.4098 - PubMed
  13. Chen, C.-C., & Chen, J. J. (2014). Benchmark dose calculation for ordered categorical responses. Risk Analysis, 34(8), 1435-1447. https://doi.org/10.1111/risa.12167 - PubMed
  14. Crump, K. S. (1984). A new method for determining allowable daily intakes. Fundamental and Applied Toxicology, 4(5), 854-871. https://doi.org/10.1016/0272-0590(84)90107-6 - PubMed
  15. Crump, K. S. (1995). Calculation of benchmark doses from continuous data. Risk Analysis, 15(1), 79-89. https://doi.org/10.1111/j.1539-6924.1995.tb00095.x - PubMed
  16. Crump, K. S., Chen, C., Chiu, W. A., Louis, T. A., Portier, C. J., Subramaniam, R. P., & White, P. D. (2010). What role for biologically based dose-response models in estimating low-dose risk? Environmental Health Perspectives, 118(5), 585-588. https://doi.org/10.1289/ehp.0901249 - PubMed
  17. Das, I. (2018). Robust benchmark dose estimation using an infinite family of response functions. Human and Ecological Risk Assessment: An International Journal, 24(8), 2054-2069. https://doi.org/10.1080/10807039.2018.1438172 - PubMed
  18. Davis, J. A., Gift, J. S., & Zhao, Q. J. (2011). Introduction to benchmark dose methods and U.S. EPA's benchmark dose software (BMDS) version 2.1.1. Toxicology and Applied Pharmacology, 254(2), 181-191. https://doi.org/10.1016/J.TAAP.2010.10.016 - PubMed
  19. Davison, A. C., & Hinkley, D. V. (2007). Bootstrap methods and their application (7th ed.). New York: Cambridge University Press. - PubMed
  20. Delignette-Muller, M. L., Lopes, C., Veber, P., & Charles, S. (2014). Statistical handling of reproduction data for exposure-response modeling. Environmental Science and Technology, 48, 7544-7551. https://doi.org/10.1021/es502009r - PubMed
  21. Demidenko, E., Williams, B. B., Flood, A. B., & Swartz, H. M. (2013). Standard error of inverse prediction for dose-response relationship: Approximate and exact statistical inference. Statistics in Medicine, 32(12), 2048-2061. https://doi.org/10.1002/sim.5668 - PubMed
  22. Deutsch, R. C., & Piegorsch, W. W. (2012). Benchmark dose profiles for joint-action quantal data in quantitative risk assessment. Biometrics, 68(4), 1313-1322. https://doi.org/10.1111/j.1541-0420.2012.01811.x - PubMed
  23. Deutsch, R. C., & Piegorsch, W. W. (2013). Benchmark dose profiles for joint-action continuous data in quantitative risk assessment. Biometrical Journal, 55(5), 741-754. https://doi.org/10.1002/bimj.201300037 - PubMed
  24. Edler, L., Poirier, K., Dourson, M., & Kleiner, J. (2002). Mathematical modelling and quantitative methods. Food and Chemical, 40, 283-326. - PubMed
  25. European Chemicals Agency. (2017). Guidance on biocidal products regulation: Volume III human health-Assessment & evaluation (Parts B+C) (pp. 1-436). https://doi.org/10.2823/143042 - PubMed
  26. European Food Safety Authority Scientific Committee. (2009). Guidance of the scientific committee on use of the benchmark dose approach in risk assessment. EFSA Journal, 1150, 1-72. https://doi.org/10.2903/j.efsa.2009.1150 - PubMed
  27. European Food Safety Authority Scientific Committee. (2016). Guidance document: Use of the benchmark dose approach in risk assessment. EFSA Journal, 1-51. https://doi.org/10.2903/j.efsa.2017.4658 - PubMed
  28. Faes, C., Aerts, M., Geys, H., & Molenberghs, G. (2007). Model averaging using fractional polynomials to estimate a safe level of exposure. Risk Analysis, 27(1), 111-123. https://doi.org/10.1111/j.1539-6924.2006.00863.x - PubMed
  29. Fang, Q., Piegorsch, W. W., & Barnes, K. Y. (2015). Bayesian benchmark dose analysis. Environmetrics, 26(5), 373-382. https://doi.org/10.1002/env.2339 - PubMed
  30. Fang, Q., Piegorsch, W. W., Simmons, S. J., Li, X., Chen, C., & Wang, Y. (2015). Bayesian model-averaged benchmark dose analysis via reparameterized quantal-response models. Biometrics, 71(4), 1168-1175. https://doi.org/10.1111/biom.12340 - PubMed
  31. Farmahin, R., Williams, A., Kuo, B., Chepelev, N. L., Thomas, R. S., Barton-Maclaren, T. S., … Yauk, C. L. (2017). Recommended approaches in the application of toxicogenomics to derive points of departure for chemical risk assessment. Archives of Toxicology, 91(5), 2045-2065. https://doi.org/10.1007/s00204-016-1886-5 - PubMed
  32. Fox, J. F., Hogan, K. A., & Davis, A. (2017). Dose-response modeling with summary data from developmental toxicity studies. Risk Analysis, 37(5), 905-917. https://doi.org/10.1111/risa.12667 - PubMed
  33. Gaylor, D. W., & Chen, J. J. (1996). Precision of benchmark dose estimates for continuous (nonquantal) measurements of toxic effects. Regulatory Toxicology and Pharmacology, 24(1), 19-23. https://doi.org/10.1006/RTPH.1996.0060 - PubMed
  34. Gaylor, D. W., & Slikker, W. (1990). Risk assessment for neurotoxic effects. Neurotoxicology, 11(2), 211-218. - PubMed
  35. Gaylor, D. W., & Slikker, W. (2004). Role of the standard deviation in the estimation of benchmark doses with continuous data. Risk Analysis, 24(6), 1683-1687. https://doi.org/10.1111/j.0272-4332.2004.559_1.x - PubMed
  36. Guha, N., Roy, A., Kopylev, L., Fox, J., Spassova, M., & White, P. (2013). Nonparametric Bayesian methods for benchmark dose estimation. Risk Analysis, 33(9), 1608-1619. https://doi.org/10.1111/risa.12004 - PubMed
  37. Haber, L. T., Dourson, M. L., Allen, B. C., Hertzberg, R. C., Parker, A., Vincent, M. J., … Boobis, A. R. (2018). Benchmark dose (BMD) modeling: Current practice, issues, and challenges. Critical Reviews in Toxicology, 48(5), 387-415. https://doi.org/10.1080/10408444.2018.1430121 - PubMed
  38. Hardy, A., Benford, D., Halldorsson, T., Jeger, M. J., Knutsen, K. H., More, S., … Schlatter, J. R. (2017). Update: Use of the benchmark dose approach in risk assessment. EFSA Journal, 15(1), 1-41. https://doi.org/10.2903/j.efsa.2017.4658 - PubMed
  39. Hughes, M. R., Bailer, A. J., & Denton, D. L. (2001). Toxicant- and response-specific comparisons of statistical methods for estimating effective concentrations. Environmental Toxicology and Chemistry, 20(6), 1374-1380. https://doi.org/10.1002/etc.5620200629 - PubMed
  40. International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use. (2014). 0013-Guideline for elemental impurities Q3D. ICH (December), 1-75. Retrieved from http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q3D/Q3D_Step_4.pdf. - PubMed
  41. International Programme on Chemical Safety. (2009). Principles and methods for the risk assessment of chemicals in food. Geneva, Switzerland: World Health Organization. - PubMed
  42. Izadi, H., Grundy, J. E., & Bose, R. (2012). Evaluation of the benchmark dose for point of departure determination for a variety of chemical classes in applied regulatory settings. Risk Analysis, 32(5), 830-835. https://doi.org/10.1111/j.1539-6924.2011.01732.x - PubMed
  43. Jensen, S. M., & Ritz, C. (2015). Simultaneous inference for model averaging of derived parameters. Risk Analysis, 35(1), 68-76. https://doi.org/10.1111/risa.12242 - PubMed
  44. Kang, S.-H., Kodell, R. L., & Chen, J. J. (2000). Incorporating model uncertainties along with data uncertainties in microbial risk assessment. Regulatory Toxicology and Pharmacology, 32(1), 68-72. https://doi.org/10.1006/RTPH.2000.1404 - PubMed
  45. Kerns, L. X. (2017). Simultaneous confidence bands for log-logistic regression with applications in risk assessment. Biometrical Journal, 59(3), 420-429. https://doi.org/10.1002/bimj.201600164 - PubMed
  46. Kerns, L. X. (2018). Multiplicity-adjusted confidence limits in risk assessment with quantal response data. Journal of Biopharmaceutical Statistics, 28(6), 1182-1192. https://doi.org/10.1080/10543406.2018.1452026 - PubMed
  47. Kim, S. B., Kodell, R. L., & Moon, H. (2014). A diversity index for model space selection in the estimation of benchmark and infectious doses via model averaging. Risk Analysis, 34(3), 453-464. https://doi.org/10.1111/risa.12104 - PubMed
  48. Kodell, R. L., & West, R. W. (1993). Upper confidence limits on excess risk for quantitative responses. Risk Analysis, 13(2), 177-182. https://doi.org/10.1111/j.1539-6924.1993.tb01067.x - PubMed
  49. Kopylev, L., & Fox, J. (2009). Parameters of a dose-response model are on the boundary: What happens with BMDL? Risk Analysis, 29(1), 18-25. https://doi.org/10.1111/j.1539-6924.2008.01125.x - PubMed
  50. Lin, L., Piegorsch, W. W., & Bhattacharya, R. (2015). Nonparametric benchmark dose estimation with continuous dose-response data. Scandinavian Journal of Statistics, 42(3), 713-731. https://doi.org/10.1111/sjos.12132 - PubMed
  51. Liu, J., Piegorsch, W. W., Schissler, A. G., & Cutter, S. L. (2018). Autologistic models for benchmark risk or vulnerability assessment of urban terrorism outcomes. Journal of the Royal Statistical Society: Series A (Statistics in Society), 181(3), 803-823. https://doi.org/10.1111/rssa.12323 - PubMed
  52. MacGregor, J. T., Frötschl, R., White, P. A., Crump, K. S., Eastmond, D. A., Fukushima, S., … Johnson, G. E. (2015). IWGT report on quantitative approaches to genotoxicity risk assessment I. Methods and metrics for defining exposure-response relationships and points of departure (PoDs). Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 783, 55-65. https://doi.org/10.1016/J.MRGENTOX.2014.09.011 - PubMed
  53. Mcculloch, C. E., & Neuhaus, J. M. (2001). Generalized linear mixed models. Chichester, UK: John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470057339.vag009.pub2 - PubMed
  54. Moerbeek, M., Piersma, A. H., & Slob, W. (2004). A comparison of three methods for calculating confidence intervals for the benchmark dose. Risk Analysis, 24(1), 31-40. https://doi.org/10.1111/j.0272-4332.2004.00409.x - PubMed
  55. Moon, H., Kim, H.-J., Chen, J. J., & Kodell, R. L. (2005). Model averaging using the Kullback information criterion in estimating effective doses for microbial infection and illness. Risk Analysis, 25(5), 1147-1159. https://doi.org/10.1111/j.1539-6924.2005.00676.x - PubMed
  56. Moon, H., Kim, S. B., Chen, J. J., George, N. I., & Kodell, R. L. (2013). Model uncertainty and model averaging in the estimation of infectious doses for microbial pathogens. Risk Analysis, 33(2), 220-231. https://doi.org/10.1111/j.1539-6924.2012.01853.x - PubMed
  57. Muri, S. D., Schlatter, J. R., & Brüschweiler, B. J. (2009). The benchmark dose approach in food risk assessment: Is it applicable and worthwhile? Food and Chemical Toxicology, 47(12), 2906-2925. https://doi.org/10.1016/J.FCT.2009.08.002 - PubMed
  58. Najita, J. S., & Catalano, P. J. (2013). On determining the BMD from multiple outcomes in developmental toxicity studies when one outcome is intentionally missing. Risk Analysis, 33(8), 1500-1509. https://doi.org/10.1111/j.1539-6924.2012.01939.x - PubMed
  59. Najita, J. S., Li, Y., & Catalano, P. J. (2009). A novel application of a bivariate regression model for binary and continuous outcomes to studies of fetal toxicity. Journal of the Royal Statistical Society: Series C (Applied Statistics), 58(4), 555-573. https://doi.org/10.1111/j.1467-9876.2009.00667.x - PubMed
  60. Namata, H., Aerts, M., Faes, C., & Teunis, P. (2008). Model averaging in microbial risk assessment using fractional polynomials. Risk Analysis, 28(4), 891-905. https://doi.org/10.1111/j.1539-6924.2008.01063.x - PubMed
  61. Nitcheva, D. K., Piegorsch, W. W., West, R. W., & Kodell, R. L. (2005). Multiplicity-adjusted inferences in risk assessment: Benchmark analysis with quantal response data. Biometrics, 61(1), 277-286. https://doi.org/10.1111/j.0006-341X.2005.031211.x - PubMed
  62. Noble, R. B., Bailer, A. J., & Park, R. (2009). Model-averaged benchmark concentration estimates for continuous response data arising from epidemiological studies. Risk Analysis, 29(4), 558-564. https://doi.org/10.1111/j.1539-6924.2008.01178.x - PubMed
  63. Öberg, M. (2010). Benchmark dose approaches in chemical health risk assessment in relation to number and distress of laboratory animals. Regulatory Toxicology and Pharmacology, 58(3), 451-454. https://doi.org/10.1016/j.yrtph.2010.08.015 - PubMed
  64. Organisation for Economic Co-Operation and Development [OECD]. (1998a). Test no. 408: Repeated dose 90-day oral toxicity study in rodents. Paris, France: OECD Publishing. https://doi.org/10.1787/9789264070707-en - PubMed
  65. Organisation for Economic Co-Operation and Development [OECD]. (1998b). Test no. 409: Repeated dose 90-day oral toxicity study in non-rodents. Paris, France: OECD Publishing. https://doi.org/10.1787/9789264070721-en - PubMed
  66. Organisation for Economic Co-Operation and Development [OECD]. (2001). Test no. 416: Two-generation reproduction toxicity. Paris, France: OECD Publishing. https://doi.org/10.1787/9789264070868-en - PubMed
  67. Organisation for Economic Co-Operation and Development [OECD]. (2008). Test no. 407: Repeated dose 28-day oral toxicity study in rodents. Paris, France: OECD Publishing. https://doi.org/10.1787/9789264070684-en - PubMed
  68. Organisation for Economic Co-Operation and Development [OECD]. (2009a). Test no. 451: Carcinogenicity studies. Paris, France: OECD Publishing. https://doi.org/10.1787/9789264071186-en - PubMed
  69. Organisation for Economic Co-Operation and Development [OECD]. (2009b). Test no. 452: Chronic toxicity studies (OECD Guidelines for the Testing of Chemicals, Section 4). Paris, France: OECD Publishing. https://doi.org/10.1787/9789264071209-en - PubMed
  70. Organisation for Economic Co-Operation and Development [OECD]. (2009c). Test no. 453: Combined chronic toxicity/carcinogenicity studies. Paris, France: OECD Publishing. https://doi.org/10.1787/9789264071223-en - PubMed
  71. Organisation for Economic Co-Operation and Development [OECD]. (2012). Guidance document 116 on the conduct and design of chronic toxicity and carcinogenicity studies, supporting test guidelines 451, 452 and 453. Paris, France: OECD Publishing. - PubMed
  72. Organisation for Economic Co-Operation and Development [OECD]. (2014). Guidance document 116 on the conduct and design of chronic toxicity and carcinogenicity studies, supporting test guidelines 451, 452 and 453. Paris, France: OECD Publishing. https://doi.org/10.1787/9789264221475-en - PubMed
  73. Organisation for Economic Co-Operation and Development [OECD]. (2017a). Test no. 412: Subacute inhalation toxicity: 28-day study. Paris, France: OECD Publishing. https://doi.org/10.1787/9789264070783-en - PubMed
  74. Organisation for Economic Co-Operation and Development [OECD]. (2017b). Test no. 413: Subchronic inhalation toxicity: 90-day study. Paris, France: OECD Publishing. https://doi.org/10.1787/9789264070806-en - PubMed
  75. Peña, E. A., Wu, W., Piegorsch, W., West, R. W., & An, L. (2017). Model selection and estimation with quantal-response data in benchmark risk assessment. Risk Analysis, 37(4), 716-732. https://doi.org/10.1111/risa.12644 - PubMed
  76. Peng, J., Robichaud, M., & Alsubie, A. Q. (2015). Simultaneous confidence bands for low-dose risk estimation with quantal data. Biometrical Journal, 57(1), 27-38. https://doi.org/10.1002/bimj.201300250 - PubMed
  77. Piegorsch, W. W. (2010). Translational benchmark risk analysis. Journal of Risk Research, 13(5), 653-667. https://doi.org/10.1080/13669870903551662 - PubMed
  78. Piegorsch, W. W. (2014). Model uncertainty in environmental dose-response risk analysis. Statistics and Public Policy, 1(1), 78-85. https://doi.org/10.1080/2330443X.2014.937021 - PubMed
  79. Piegorsch, W. W., An, L., Wickens, A. A., West, R. W., Peña, E. A., & Wu, W. (2013). Information-theoretic model-averaged benchmark dose analysis in environmental risk assessment. Environmetrics, 24(3), 143-157. https://doi.org/10.1002/env.2201 - PubMed
  80. Piegorsch, W. W., Xiong, H., Bhattacharya, R. N., & Lin, L. (2012). Nonparametric estimation of benchmark doses in environmental risk assessment. Environmetrics, 23(8), 717-728. https://doi.org/10.1002/env.2175 - PubMed
  81. Piegorsch, W. W., Xiong, H., Bhattacharya, R. N., & Lin, L. (2014). Benchmark dose analysis via nonparametric regression modeling. Risk Analysis, 34(1), 135-151. https://doi.org/10.1111/risa.12066 - PubMed
  82. R Core Team. (2018). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. - PubMed
  83. Ringblom, J., Johanson, G., & Öberg, M. (2014). Current modeling practice may lead to falsely high benchmark dose estimates. Regulatory Toxicology and Pharmacology, 69(2), 171-177. https://doi.org/10.1016/J.YRTPH.2014.03.004 - PubMed
  84. Ringblom, J., Kalantari, F., Johanson, G., & Öberg, M. (2017). Influence of distribution of animals between dose groups on estimated benchmark dose and animal welfare for continuous effects. Risk Analysis, 37(9), 1716-1728. https://doi.org/10.1111/risa.12929 - PubMed
  85. Risk Assessment Forum. (2005). Guidelines for carcinogen risk assessment (pp. 1-166). Washington, DC: U.S. Environmental Protection Agency. Retrieved from https://www.epa.gov/sites/production/files/2013-09/documents/cancer_guidelines_final_3-25-05.pdf. - PubMed
  86. Ritz, C., Baty, F., Streibig, J. C., & Gerhard, D. (2015). Dose-response analysis using R. PloS One, 10(12), e0146021. https://doi.org/10.1371/journal.pone.0146021 - PubMed
  87. Ritz, C., Gerhard, D., & Hothorn, L. A. (2013). A unified framework for benchmark dose estimation applied to mixed models and model averaging. Statistics in Biopharmaceutical Research, 5(1), 79-90. https://doi.org/10.1080/19466315.2012.757559 - PubMed
  88. Roberts, S., & Martin, M. A. (2010). Bootstrap-after-bootstrap model averaging for reducing model uncertainty in model selection for air pollution mortality studies. Environmental Health Perspectives, 118(1), 131-136. https://doi.org/10.1289/ehp.0901007 - PubMed
  89. Sand, S., Victorin, K., & Filipsson, A. F. (2008). The current state of knowledge on the use of the benchmark dose concept in risk assessment. Journal of Applied Toxicology, 28(4), 405-421. https://doi.org/10.1002/jat.1298 - PubMed
  90. Sand, S., von Rosen, D., Victorin, K., & Falk Filipsson, A. (2006). Identification of a critical dose level for risk assessment: Developments in benchmark dose analysis of continuous endpoints. Toxicological Sciences, 90(1), 241-251. https://doi.org/10.1093/toxsci/kfj057 - PubMed
  91. Scientific Committee on Consumer Safety. (2016). The SCCS's notes of guidance for the testing of cosmetic ingredients (pp. 1-145). Retrieved from http://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_o_190.pdf. - PubMed
  92. Shao, K. (2012). A comparison of three methods for integrating historical information for Bayesian model averaged benchmark dose estimation. Environmental Toxicology and Pharmacology, 34(2), 288-296. https://doi.org/10.1016/J.ETAP.2012.05.002 - PubMed
  93. Shao, K., Gift, J. S., & Setzer, R. W. (2013). Is the assumption of normality or log-normality for continuous response data critical for benchmark dose estimation? Toxicology and Applied Pharmacology, 272(3), 767-779. https://doi.org/10.1016/J.TAAP.2013.08.006 - PubMed
  94. Shao, K., & Small, M. J. (2011). Potential uncertainty reduction in model-averaged benchmark dose estimates informed by an additional dose study. Risk Analysis, 31(10), 1561-1575. https://doi.org/10.1111/j.1539-6924.2011.01595.x - PubMed
  95. Shao, K., & Small, M. J. (2012). Statistical evaluation of toxicological experimental design for Bayesian model averaged benchmark dose estimation with dichotomous data. Human and Ecological Risk Assessment: An International Journal, 18(5), 1096-1119. https://doi.org/10.1080/10807039.2012.707938 - PubMed
  96. Simmons, S. J., Chen, C., Li, X., Wang, Y., Piegorsch, W. W., Fang, Q., … Dunn, G. E. (2015). Bayesian model averaging for benchmark dose estimation. Environmental and Ecological Statistics, 22(1), 5-16. https://doi.org/10.1007/s10651-014-0285-4 - PubMed
  97. Slikker, W., Andersen, M. E., Bogdanffy, M. S., Bus, J. S., Cohen, S. D., Conolly, R. B., … Wallace, K. (2004). Dose-dependent transitions in mechanisms of toxicity. Toxicology and Applied Pharmacology, 201(3), 203-225. https://doi.org/10.1016/j.taap.2004.06.019 - PubMed
  98. Slob, W. (2014a). Benchmark dose and the three Rs. Part I. Getting more information from the same number of animals. Critical Reviews in Toxicology, 44(7), 557-567. https://doi.org/10.3109/10408444.2014.925423 - PubMed
  99. Slob, W. (2014b). Benchmark dose and the three Rs. Part II. Consequences for study design and animal use. Critical Reviews in Toxicology, 44(7), 568-580. https://doi.org/10.3109/10408444.2014.925424 - PubMed
  100. Slob, W. (2017). A general theory of effect size, and its consequences for defining the benchmark response (BMR) for continuous endpoints. Critical Reviews in Toxicology, 47(4), 342-351. https://doi.org/10.1080/10408444.2016.1241756 - PubMed
  101. Slob, W. (2018). Joint project on benchmark dose modelling with RIVM. EFSA Supporting Publications, 15(12), 1-14. https://doi.org/10.2903/sp.efsa.2018.EN-1497 - PubMed
  102. Slob, W., Moerbeek, M., Rauniomaa, E., & Piersma, A. H. (2005). A statistical evaluation of toxicity study designs for the estimation of the benchmark dose in continuous endpoints. Toxicological Sciences, 84(1), 167-185. https://doi.org/10.1093/toxsci/kfi004 - PubMed
  103. Slob, W., & Pieters, M. N. (1998). A probabilistic approach for deriving acceptable human intake limits and human health risks from toxicological studies: General framework. Risk Analysis, 18(6), 787-798. https://doi.org/10.1111/j.1539-6924.1998.tb01121.x - PubMed
  104. Slob, W., & Setzer, R. W. (2014). Shape and steepness of toxicological dose-response relationships of continuous endpoints. Critical Reviews in Toxicology, 44(3), 270-297. https://doi.org/10.3109/10408444.2013.853726 - PubMed
  105. Smetanová, S., Riedl, J., Zitzkat, D., Altenburger, R., & Busch, W. (2015). High-throughput concentration-response analysis for omics datasets. Environmental Toxicology and Chemistry, 34(9), 2167-2180. https://doi.org/10.1002/etc.3025 - PubMed
  106. Taft, S. C., & Hines, S. A. (2012). Benchmark dose analysis for Bacillus anthracis inhalation exposures in the nonhuman primate. Risk Analysis, 32(10), 1750-1768. https://doi.org/10.1111/j.1539-6924.2012.01808.x - PubMed
  107. Thomas, R. S., Allen, B. C., Nong, A., Yang, L., Bermudez, E., Clewell, H. J., & Andersen, M. E. (2007). A method to integrate benchmark dose estimates with genomic data to assess the functional effects of chemical exposure. Toxicological Sciences, 98(1), 240-248. https://doi.org/10.1093/toxsci/kfm092 - PubMed
  108. Thomas, R. S., Clewell, H. J., Allen, B. C., Wesselkamper, S. C., Wang, N. C. Y., Lambert, J. C., … Andersen, M. E. (2011). Application of transcriptional benchmark dose values in quantitative cancer and noncancer risk assessment. Toxicological Sciences, 120(1), 194-205. https://doi.org/10.1093/toxsci/kfq355 - PubMed
  109. U.S. Environmental Protection Agency [U.S. EPA]. (2012). Benchmark dose technical guidance. Washington, DC: Author. - PubMed
  110. Varewyck, M., & Verbeke, T. (2017). Software for benchmark dose modelling. EFSA Supporting Publications, 14(2), 1-15. https://doi.org/10.2903/sp.efsa.2017.EN-1170 - PubMed
  111. West, R. W., Nitcheva, D. K., & Piegorsch, W. W. (2009). Bootstrap methods for simultaneous benchmark analysis with quantal response data. Environmental and Ecological Statistics, 16(1), 63-73. https://doi.org/10.1007/s10651-007-0073-5 - PubMed
  112. West, R. W., Piegorsch, W. W., Peña, E. A., An, L., Wu, W., Wickens, A. A., … Chen, W. (2012). The impact of model uncertainty on benchmark dose estimation. Environmetrics, 23(8), 706-716. https://doi.org/10.1002/env.2180 - PubMed
  113. Wheeler, M. W., & Bailer, A. J. (2007). Properties of model-averaged BMDLs: A study of model averaging in dichotomous response risk estimation. Risk Analysis, 27(3), 659-670. https://doi.org/10.1111/j.1539-6924.2007.00920.x - PubMed
  114. Wheeler, M. W., & Bailer, A. J. (2008). Model averaging software for dichotomous dose response risk estimation. Journal of Statistical Software, 26(5), 1-15. https://doi.org/10.18637/jss.v026.i05 - PubMed
  115. Wheeler, M. W., & Bailer, A. J. (2009a). Benchmark dose estimation incorporating multiple data sources. Risk Analysis, 29(2), 249-256. https://doi.org/10.1111/j.1539-6924.2008.01144.x - PubMed
  116. Wheeler, M. W., & Bailer, A. J. (2009b). Comparing model averaging with other model selection strategies for benchmark dose estimation. Environmental and Ecological Statistics, 16(1), 37-51. https://doi.org/10.1007/s10651-007-0071-7 - PubMed
  117. Wheeler, M. W., & Bailer, A. J. (2012). Monotonic Bayesian semiparametric benchmark dose analysis. Risk Analysis, 32(7), 1207-1218. https://doi.org/10.1111/j.1539-6924.2011.01786.x - PubMed
  118. Wheeler, M. W., & Bailer, A. J. (2013). An empirical comparison of low-dose extrapolation from points of departure (PoD) compared to extrapolations based upon methods that account for model uncertainty. Regulatory Toxicology and Pharmacology, 67(1), 75-82. https://doi.org/10.1016/J.YRTPH.2013.06.006 - PubMed
  119. Wheeler, M. W., Bailer, A. J., Cole, T., Park, R. M., & Shao, K. (2017). Bayesian quantile impairment threshold benchmark dose estimation for continuous endpoints. Risk Analysis, 37(11), 2107-2118. https://doi.org/10.1111/risa.12762 - PubMed
  120. Wheeler, M. W., Park, R. M., Bailer, A. J., & Whittaker, C. (2015). Historical context and recent advances in exposure-response estimation for deriving occupational exposure limits. Journal of Occupational and Environmental Hygiene, 12(Supp. 1), S7-S17. https://doi.org/10.1080/15459624.2015.1076934 - PubMed
  121. Wheeler, M. W., Shao, K., & Bailer, A. J. (2015). Quantile benchmark dose estimation for continuous endpoints. Environmetrics, 26(5), 363-372. https://doi.org/10.1002/env.2342 - PubMed
  122. Whitney, M., & Ryan, L. (2013). Uncertainty due to low-dose extrapolation: Modified BMD methodology for epidemiological data. Environmetrics, 24(5), 289-297. https://doi.org/10.1002/ENV.2217 - PubMed
  123. World Health Organization. (2014). Guidance document on evaluating and expressing uncertainty in hazard characterization (pp. 1-181). Geneva, Switzerland. Retrieved from https://www.who.int/ipcs/methods/harmonization/uncertainty_in_hazard_characterization.pdf. - PubMed
  124. Wu, Y., Piegorsch, W. W., West, R. W., Tang, D., Petkewich, M. O., & Pan, W. (2006). Multiplicity-adjusted inferences in risk assessment: Benchmark analysis with continuous response data. Environmental and Ecological Statistics, 13(1), 125-141. https://doi.org/10.1007/s10651-005-5695-x - PubMed
  125. Yang, L., Allen, B. C., & Thomas, R. S. (2007). BMDExpress: A software tool for the benchmark dose analyses of genomic data. BMC Genomics, 8(1), 387. https://doi.org/10.1186/1471-2164-8-387 - PubMed
  126. Yu, Z.-F., & Catalano, P. J. (2005). Quantitative risk assessment for multivariate continuous outcomes with application to neurotoxicology: The bivariate case. Biometrics, 61(3), 757-766. https://doi.org/10.1111/j.1541-0420.2005.00350.x - PubMed
  127. Zeller, A., Duran-Pacheco, G., & Guérard, M. (2017). An appraisal of critical effect sizes for the benchmark dose approach to assess dose-response relationships in genetic toxicology. Archives of Toxicology, 91(12), 3799-3807. https://doi.org/10.1007/s00204-017-2037-3 - PubMed
  128. Zhang, J., Bailer, A. J., & Oris, J. T. (2012a). Bayesian approach to estimating reproductive inhibition potency in aquatic toxicity testing. Environmental Toxicology and Chemistry, 31(4), 916-927. https://doi.org/10.1002/etc.1769 - PubMed
  129. Zhang, J., Bailer, A. J., & Oris, J. T. (2012b). Bayesian approach to potency estimation for aquatic toxicology experiments when a toxicant affects both fecundity and survival. Environmental Toxicology and Chemistry, 31(8), 1920-1930. https://doi.org/10.1002/etc.1886 - PubMed
  130. Zhang, J., Bailer, A. J., & Oris, J. T. (2014). Estimating potency for hierarchical dichotomous responses in an aquatic toxicology study, Journal of Agricultural, Biological, and Environmental Statistics, 19(2), 185-201. https://doi.org/10.1007/s13253-014-0165-2 - PubMed
  131. Zhu, Y., Jia, Z., Wang, W., Gift, J. S., Moser, V. C., & Pierre-Louis, B. J. (2005). Analyses of neurobehavioral screening data: Benchmark dose estimation. Regulatory Toxicology and Pharmacology, 42(2), 190-201. https://doi.org/10.1016/J.YRTPH.2005.03.007 - PubMed
  132. Zhu, Y., Wang, T., & Jelsovsky, J. Z. H. (2007). Bootstrap estimation of benchmark doses and confidence limits with clustered quantal data. Risk Analysis, 27(2), 447-465. https://doi.org/10.1111/j.1539-6924.2007.00897.x - PubMed

MeSH terms

Publication Types