Display options
Share it on

PeerJ. 2019 Sep 26;7:e7691. doi: 10.7717/peerj.7691. eCollection 2019.

Larval assemblages over the abyssal plain in the Pacific are highly diverse and spatially patchy.

PeerJ

Oliver Kersten, Eric W Vetter, Michelle J Jungbluth, Craig R Smith, Erica Goetze

Affiliations

  1. Hawaii Pacific University, Kaneohe, HI, United States of America.
  2. Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway.
  3. Department of Oceanography, University of Hawaii at Manoa, Honolulu, HI, United States of America.

PMID: 31579593 PMCID: PMC6766376 DOI: 10.7717/peerj.7691

Abstract

Abyssal plains are among the most biodiverse yet least explored marine ecosystems on our planet, and they are increasingly threatened by human impacts, including future deep seafloor mining. Recovery of abyssal populations from the impacts of polymetallic nodule mining will be partially determined by the availability and dispersal of pelagic larvae leading to benthic recolonization of disturbed areas of the seafloor. Here we use a tree-of-life (TOL) metabarcoding approach to investigate the species richness, diversity, and spatial variability of the larval assemblage at mesoscales across the abyssal seafloor in two mining-claim areas in the eastern Clarion Clipperton Fracture Zone (CCZ; abyssal Pacific). Our approach revealed a previously unknown taxonomic richness within the meroplankton assemblage, detecting larvae from 12 phyla, 23 Classes, 46 Orders, and 65 Families, including a number of taxa not previously reported at abyssal depths or within the Pacific Ocean. A novel suite of parasitic copepods and worms were sampled, from families that are known to associate with other benthic invertebrates or demersal fishes as hosts. Larval assemblages were patchily distributed at the mesoscale, with little similarity in OTUs detected among deployments even within the same 30 × 30 km study area. Our results provide baseline observations on larval diversity prior to polymetallic nodule mining in this region, and emphasize our overwhelming lack of knowledge regarding larvae of the benthic boundary layer in abyssal plain ecosystems.

©2019 Kersten et al.

Keywords: Benthic Boundary Layer (BBL); Clarion Clipperton Fracture Zone (CCZ); Deep sea; Larval dispersal; Metabarcoding; Polymetallic nodule mining

Conflict of interest statement

The authors declare there are no competing interests.

References

  1. Syst Biol. 2008 Oct;57(5):750-7 - PubMed
  2. Appl Environ Microbiol. 2013 Sep;79(17):5112-20 - PubMed
  3. Proc Biol Sci. 2013 Nov 06;280(1773):20131684 - PubMed
  4. Mol Ecol Resour. 2018 May;18(3):391-406 - PubMed
  5. Mol Ecol. 2018 Dec;27(23):4657-4679 - PubMed
  6. Nucleic Acids Res. 2016 Jul 8;44(W1):W242-5 - PubMed
  7. Science. 2015 Jul 10;349(6244):144-5 - PubMed
  8. Mol Ecol. 2016 Jul;25(14):3276-98 - PubMed
  9. Biodivers Data J. 2017 Aug 14;(5):e14598 - PubMed
  10. Zookeys. 2017 Oct 10;(707):1-46 - PubMed
  11. Mol Ecol. 2010 Oct;19(20):4391-411 - PubMed
  12. Biol Lett. 2014 Sep;10(9):null - PubMed
  13. Nucleic Acids Res. 2014 Jan;42(Database issue):D643-8 - PubMed
  14. Sci Rep. 2016 Jul 29;6:30492 - PubMed
  15. Appl Environ Microbiol. 2009 Dec;75(23):7537-41 - PubMed
  16. Ann Rev Mar Sci. 2009;1:443-66 - PubMed
  17. BMC Bioinformatics. 2015 May 22;16:169 - PubMed
  18. Sci Rep. 2017 Apr 06;7:45288 - PubMed
  19. Ann Rev Mar Sci. 2015;7:497-520 - PubMed
  20. Mol Ecol Resour. 2013 Jul;13(4):620-33 - PubMed
  21. Appl Environ Microbiol. 2007 Aug;73(16):5261-7 - PubMed
  22. Microbiologyopen. 2017 Apr;6(2): - PubMed
  23. PLoS One. 2012;7(12):e50015 - PubMed
  24. Biodivers Data J. 2016 Jun 30;(4):e9277 - PubMed
  25. Nat Commun. 2010 Oct 19;1:98 - PubMed
  26. Biodivers Data J. 2016 Jan 25;(4):e7251 - PubMed
  27. Mol Ecol. 2017 Nov;26(21):6136-6156 - PubMed
  28. Proc Biol Sci. 2010 Dec 7;277(1700):3533-46 - PubMed
  29. PLoS One. 2015 Feb 11;10(2):e0117790 - PubMed
  30. Nucleic Acids Res. 2013 Jan;41(Database issue):D590-6 - PubMed
  31. Proc Natl Acad Sci U S A. 2006 Aug 8;103(32):12115-20 - PubMed
  32. PLoS One. 2011;6(9):e22594 - PubMed
  33. Integr Comp Biol. 2012 Oct;52(4):483-96 - PubMed
  34. Ann Rev Mar Sci. 2015;7:571-96 - PubMed
  35. Elife. 2018 Nov 27;7: - PubMed
  36. Bioinformatics. 2014 Mar 1;30(5):614-20 - PubMed
  37. Science. 2007 Oct 5;318(5847):97-100 - PubMed
  38. PeerJ. 2016 Oct 18;4:e2584 - PubMed
  39. Cancer Res. 1967 Feb;27(2):209-20 - PubMed
  40. Biometrics. 2006 Mar;62(1):245-53 - PubMed
  41. Parasitology. 2004 Jan;128(Pt 1):1-6 - PubMed
  42. Proc Natl Acad Sci U S A. 2010 Apr 27;107(17):7829-34 - PubMed
  43. PLoS One. 2012;7(9):e46180 - PubMed
  44. Sci Rep. 2016 Jun 01;6:26808 - PubMed
  45. Sci Data. 2017 Mar 14;4:170027 - PubMed
  46. PLoS One. 2013 Nov 07;8(11):e81327 - PubMed
  47. Biodivers Data J. 2017 May 11;(5):e11794 - PubMed
  48. Limnol Oceanogr Methods. 2018 Apr;16(4):209-221 - PubMed
  49. Front Zool. 2013 Jun 14;10:34 - PubMed
  50. Proc Natl Acad Sci U S A. 2015 Feb 17;112(7):2076-81 - PubMed
  51. Trends Ecol Evol. 2008 Sep;23(9):518-28 - PubMed
  52. Zootaxa. 2016 Jul 01;4132(4):521-39 - PubMed

Publication Types