Display options
Share it on

Sci Rep. 2019 Nov 14;9(1):16784. doi: 10.1038/s41598-019-53151-z.

Additive manufacturing of laminar flow cells for single-molecule experiments.

Scientific reports

Arash Ahmadi, Katharina Till, Yngve Hafting, Mark Schüttpelz, Magnar Bjørås, Kyrre Glette, Jim Tørresen, Alexander D Rowe, Bjørn Dalhus

Affiliations

  1. Department of Medical Biochemistry, Institute for Clinical Medicine, University of Oslo, Oslo, Norway.
  2. Biomolecular Photonics, Department of Physics, University of Bielefeld, Bielefeld, Germany.
  3. Department of Informatics, University of Oslo, Oslo, Norway.
  4. Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
  5. Department of Microbiology, Oslo University Hospital HF, Rikshospitalet and University of Oslo, Oslo, Norway.
  6. Department of Medical Biochemistry, Institute for Clinical Medicine, University of Oslo, Oslo, Norway. [email protected].
  7. Department of Newborn Screening, Division of Child and Adolescent Medicine, Oslo University Hospital, Oslo, Norway. [email protected].
  8. Department of Medical Biochemistry, Institute for Clinical Medicine, University of Oslo, Oslo, Norway. [email protected].
  9. Department of Microbiology, Oslo University Hospital HF, Rikshospitalet and University of Oslo, Oslo, Norway. [email protected].

PMID: 31727950 PMCID: PMC6856346 DOI: 10.1038/s41598-019-53151-z

Abstract

A microfluidic laminar flow cell (LFC) forms an indispensable component in single-molecule experiments, enabling different substances to be delivered directly to the point under observation and thereby tightly controlling the biochemical environment immediately surrounding single molecules. Despite substantial progress in the production of such components, the process remains relatively inefficient, inaccurate and time-consuming. Here we address challenges and limitations in the routines, materials and the designs that have been commonly employed in the field, and introduce a new generation of LFCs designed for single-molecule experiments and assembled using additive manufacturing. We present single- and multi-channel, as well as reservoir-based LFCs produced by 3D printing to perform single-molecule experiments. Using these flow cells along with optical tweezers, we show compatibility with single-molecule experiments including the isolation and manipulation of single DNA molecules either attached to the surface of a coverslip or as freely movable DNA dumbbells, as well as direct observation of protein-DNA interactions. Using additive manufacturing to produce LFCs with versatility of design and ease of production allow experimentalists to optimize the flow cells to their biological experiments and provide considerable potential for performing multi-component single-molecule experiments.

References

  1. Nat Struct Mol Biol. 2011 Aug 14;18(9):1020-7 - PubMed
  2. Nat Commun. 2015 Jun 01;6:7277 - PubMed
  3. Nature. 1999 Jul 8;400(6740):184-9 - PubMed
  4. Biophys J. 2002 Mar;82(3):1537-53 - PubMed
  5. Nature. 2005 Nov 24;438(7067):460-5 - PubMed
  6. Nat Commun. 2016 Dec 13;7:13711 - PubMed
  7. Science. 1994 May 6;264(5160):819-22 - PubMed
  8. Curr Opin Struct Biol. 2000 Jun;10(3):279-85 - PubMed
  9. Science. 2003 Dec 19;302(5653):2130-4 - PubMed
  10. Nat Protoc. 2013 Mar;8(3):525-38 - PubMed
  11. Electrophoresis. 2002 Oct;23(20):3461-73 - PubMed
  12. Proc Natl Acad Sci U S A. 2007 Jul 31;104(31):12610-5 - PubMed
  13. Methods Enzymol. 2010;475:259-78 - PubMed
  14. Nat Methods. 2008 Jun;5(6):517-25 - PubMed
  15. J Biol Chem. 2009 Jun 26;284(26):17700-10 - PubMed
  16. Proc Natl Acad Sci U S A. 2012 Nov 6;109(45):E3074-83 - PubMed
  17. Proc Natl Acad Sci U S A. 2011 Jan 11;108(2):563-8 - PubMed
  18. Nat Commun. 2017 Jun 01;8:15692 - PubMed
  19. Nature. 2006 Oct 19;443(7113):875-8 - PubMed
  20. Proc Natl Acad Sci U S A. 1997 Jun 10;94(12):6185-90 - PubMed
  21. Proc Natl Acad Sci U S A. 2009 Oct 27;106(43):18231-6 - PubMed
  22. Nature. 2009 Sep 3;461(7260):125-8 - PubMed
  23. Proc Natl Acad Sci U S A. 2007 Jul 17;104(29):11957-62 - PubMed
  24. Proc Natl Acad Sci U S A. 2008 Aug 5;105(31):10721-6 - PubMed
  25. J Biol Methods. 2014;1(2): - PubMed
  26. Science. 1993 Dec 3;262(5139):1561-3 - PubMed
  27. Proc Natl Acad Sci U S A. 2006 Apr 11;103(15):5752-7 - PubMed
  28. Nat Struct Biol. 2001 Jul;8(7):606-10 - PubMed
  29. Nat Methods. 2007 Dec;4(12):1031-6 - PubMed
  30. Curr Opin Chem Biol. 2006 Dec;10(6):584-91 - PubMed
  31. Nature. 2010 Dec 16;468(7326):983-7 - PubMed
  32. Biophys J. 1999 Oct;77(4):2284-94 - PubMed
  33. Lab Chip. 2002 May;2(2):88-95 - PubMed
  34. Cytometry. 1999 Jul 1;36(3):200-8 - PubMed
  35. J Struct Biol. 2013 Jul;183(1):66-75 - PubMed
  36. Proc Natl Acad Sci U S A. 2013 Mar 5;110(10):3859-64 - PubMed
  37. Nucleic Acids Res. 2008 Jul;36(12):4118-27 - PubMed
  38. Cell. 2013 Jan 31;152(3):442-52 - PubMed
  39. Nat Commun. 2018 Dec 19;9(1):5381 - PubMed
  40. Nucleic Acids Res. 2019 Apr 8;47(6):3058-3071 - PubMed
  41. Nucleic Acids Res. 2011 Sep 1;39(17):7487-98 - PubMed
  42. Nature. 2011 Jul 06;475(7354):118-21 - PubMed
  43. Proc Natl Acad Sci U S A. 2007 Sep 11;104(37):14652-7 - PubMed
  44. Proc Natl Acad Sci U S A. 2006 May 9;103(19):7310-4 - PubMed
  45. Proc Natl Acad Sci U S A. 2007 Aug 28;104(35):13925-9 - PubMed
  46. Proc Natl Acad Sci U S A. 2014 Mar 18;111(11):4073-8 - PubMed

Substances

MeSH terms

Publication Types