Display options
Share it on

Neurooncol Adv. 2019 May-Dec;1(1):vdz027. doi: 10.1093/noajnl/vdz027. Epub 2019 Sep 23.

Sox2.

Neuro-oncology advances

Daniel M Treisman, Yinghua Li, Brianna R Pierce, Chaoyang Li, Andrew P Chervenak, Gerald J Tomasek, Guillermina Lozano, Xiaoyan Zheng, Marcel Kool, Yuan Zhu

Affiliations

  1. Cellular and Molecular Biology Graduate Program, Ann Arbor, Michigan.
  2. Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan.
  3. Gilbert Family Neurofibromatosis Institute, Washington, DC.
  4. Center for Cancer and Immunology Research, Washington, DC.
  5. Center for Neuroscience Research, Children's National Medical Center, Washington, DC.
  6. Department of Molecular Genetics, Section of Cancer Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
  7. Department of Anatomy and Cell Biology, The GW School of Medicine and Health Sciences, The GW Cancer Center, Washington, DC.
  8. Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.

PMID: 31763624 PMCID: PMC6860004 DOI: 10.1093/noajnl/vdz027

Abstract

BACKGROUND: High-intensity therapy effectively treats most

METHODS: Using mouse SHH-MB models with different p53 activities, we investigated therapeutic efficacy by activating p53-mediated cell-cycle arrest versus p53-mediated apoptosis on radiation-induced recurrence.

RESULTS: Upon radiation treatment, p53

CONCLUSIONS: Quiescent Sox2

© The Author(s) 2019. Published by Oxford University Press, the Society for Neuro-Oncology and the European Association of Neuro-Oncology.

Keywords: Sonic Hedgehog medulloblastoma; apoptosis; granule cell precursor; neural precursor; p53

References

  1. Acta Neuropathol. 2016 Jun;131(6):821-31 - PubMed
  2. Trends Mol Med. 2016 May;22(5):404-413 - PubMed
  3. Cancer Cell. 2011 Mar 8;19(3):359-71 - PubMed
  4. Cerebellum. 2016 Dec;15(6):789-828 - PubMed
  5. Nat Genet. 2004 Jan;36(1):63-8 - PubMed
  6. Cancer Res. 2013 Jun 15;73(12):3796-807 - PubMed
  7. Cancer. 2011 Jul 15;117(14):3262-7 - PubMed
  8. Nature. 2019 Aug;572(7767):67-73 - PubMed
  9. Cell Rep. 2018 Jul 10;24(2):463-478.e5 - PubMed
  10. Nat Rev Cancer. 2003 Feb;3(2):117-29 - PubMed
  11. Cancer Cell. 2017 Jun 12;31(6):737-754.e6 - PubMed
  12. Cancer Res. 2016 Jun 1;76(11):3211-23 - PubMed
  13. Nat Rev Dis Primers. 2019 Feb 14;5(1):11 - PubMed
  14. Cold Spring Harb Perspect Med. 2016 Aug 01;6(8): - PubMed
  15. Lancet Oncol. 2018 Jun;19(6):768-784 - PubMed
  16. Nat Neurosci. 2013 Dec;16(12):1737-44 - PubMed
  17. J Clin Oncol. 2013 Aug 10;31(23):2927-35 - PubMed
  18. Cancer Cell. 2014 Mar 17;25(3):393-405 - PubMed
  19. Cancer Cell. 2008 Aug 12;14(2):135-45 - PubMed
  20. PLoS One. 2008 Aug 28;3(8):e3088 - PubMed
  21. Cancer Res. 2001 Jan 15;61(2):513-6 - PubMed
  22. Genes Dev. 2008 Feb 15;22(4):436-48 - PubMed
  23. Cancer Cell. 2008 Aug 12;14(2):123-34 - PubMed
  24. Cell. 2017 Sep 7;170(6):1062-1078 - PubMed
  25. Neuron. 2007 Feb 15;53(4):503-17 - PubMed
  26. Nature. 2012 Aug 2;488(7409):43-8 - PubMed
  27. Cell Rep. 2016 Mar 29;14(12):2925-37 - PubMed
  28. Oncogene. 2006 Feb 23;25(8):1165-73 - PubMed
  29. Cancer Cell. 2014 Jul 14;26(1):33-47 - PubMed
  30. Nature. 2019 Aug;572(7767):74-79 - PubMed
  31. Cancer Cell. 2009 Jun 2;15(6):514-26 - PubMed
  32. Pediatr Blood Cancer. 2016 Sep;63(9):1527-34 - PubMed
  33. Oncogene. 2002 Oct 24;21(49):7580-4 - PubMed
  34. Nat Neurosci. 2017 Oct;20(10):1361-1370 - PubMed
  35. Acta Neuropathol. 2016 Jun;131(6):803-20 - PubMed

Publication Types

Grant support