Display options
Share it on

J Clin Med. 2019 Nov 21;8(12). doi: 10.3390/jcm8122031.

Regorafenib CSF Penetration, Efficacy, and MRI Patterns in Recurrent Malignant Glioma Patients.

Journal of clinical medicine

Pia S Zeiner, Martina Kinzig, Iris Divé, Gabriele D Maurer, Katharina Filipski, Patrick N Harter, Christian Senft, Oliver Bähr, Elke Hattingen, Joachim P Steinbach, Fritz Sörgel, Martin Voss, Eike Steidl, Michael W Ronellenfitsch

Affiliations

  1. Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main POSTCODE, Germany.
  2. University Cancer Center (UCT) Frankfurt, University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main POSTCODE, Germany.
  3. German Cancer Consortium (DKTK), 60590 Frankfurt am Main POSTCODE, Germany.
  4. Frankfurt Cancer Institute (FCI), University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main POSTCODE, Germany.
  5. IBMP-Institute for Biomedical and Pharmaceutical Research, Nürnberg-Heroldsberg POSTCODE, Germany.
  6. Institute of Neurology (Edinger-Institute), University Hospital Frankfurt, Goethe University, Frankfurt am Main POSTCODE, Germany.
  7. Department of Neurosurgery, University Hospital Frankfurt, Goethe University, Frankfurt am Main POSTCODE, Germany.
  8. Department of Neurology, Klinikum Aschaffenburg-Alzenau, Aschaffenburg POSTCODE, Germany.
  9. Department of Neuroradiology, University Hospital Frankfurt, Goethe University, Frankfurt am Main POSTCODE, Germany.
  10. Institute of Pharmacology, University Duisburg-Essen, Essen POSTCODE, Germany.

PMID: 31766326 PMCID: PMC6947028 DOI: 10.3390/jcm8122031

Abstract

(1) Background: The phase 2 Regorafenib in Relapsed Glioblastoma (REGOMA) trial indicated a survival benefit for patients with first recurrence of a glioblastoma when treated with the multikinase inhibitor regorafenib (REG) instead of lomustine. The aim of this retrospective study was to investigate REG penetration to cerebrospinal fluid (CSF), treatment efficacy, and effects on magnetic resonance imaging (MRI) in patients with recurrent high-grade gliomas. (2) Methods: Patients were characterized by histology, adverse events, steroid treatment, overall survival (OS), and MRI growth pattern. REG and its two active metabolites were quantified by liquid chromatography/tandem mass spectrometry in patients' serum and CSF. (3) Results: 21 patients mainly with IDH-wildtype glioblastomas who had been treated with REG were retrospectively identified. Thirteen CFS samples collected from 3 patients of the cohort were available for pharmacokinetic testing. CSF levels of REG and its metabolites were significantly lower than in serum. Follow-up MRI was available in 19 patients and showed progressive disease (PD) in all but 2 patients. Two distinct MRI patterns were identified: 7 patients showed classic PD with progression of contrast enhancing lesions, whereas 11 patients showed a T2-dominant MRI pattern characterized by a marked reduction of contrast enhancement. Median OS was significantly better in patients with a T2-dominant growth pattern (10 vs. 27 weeks respectively,

Keywords: MRI patterns of gliomas; glioblastoma; malignant glioma; regorafenib; regorafenib csf concentration

Conflict of interest statement

J.P.S. has received honoraria for lectures or advisory board participation or consulting or travel grants from Abbvie, Roche, Boehringer, Bristol-Myers Squibb, Medac, Mundipharma and UCB. All other au

References

  1. Neuro Oncol. 2015 Sep;17(9):1188-98 - PubMed
  2. J Neurooncol. 2010 Aug;99(1):49-56 - PubMed
  3. Cancer Chemother Pharmacol. 2018 Jan;81(1):195-206 - PubMed
  4. Neuro Oncol. 2017 Jan;19(1):118-127 - PubMed
  5. J Neurooncol. 2012 Jan;106(1):111-9 - PubMed
  6. Nature. 2018 Mar 22;555(7697):469-474 - PubMed
  7. Lancet. 2013 Jan 26;381(9863):295-302 - PubMed
  8. Am J Physiol. 1983 Sep;245(3):R303-10 - PubMed
  9. Neurology. 2014 Jul 15;83(3):227-34 - PubMed
  10. Neuro Oncol. 2015 Jun;17(6):784-800 - PubMed
  11. Medicines (Basel). 2018 Feb 25;5(1):null - PubMed
  12. Medicines (Basel). 2018 Feb 26;5(1):null - PubMed
  13. Invest Radiol. 2013 Oct;48(10):715-21 - PubMed
  14. Lancet Oncol. 2019 Jan;20(1):110-119 - PubMed
  15. Neuro Oncol. 2012 Feb;14(2):222-9 - PubMed
  16. Lancet. 2013 Jan 26;381(9863):303-12 - PubMed
  17. Neurology. 2011 Feb 1;76(5):432-7 - PubMed
  18. J Clin Oncol. 2013 Sep 10;31(26):3212-8 - PubMed
  19. Neuro Oncol. 2019 Jul 11;21(7):954-955 - PubMed
  20. Lancet Oncol. 2019 Jan;20(1):10-12 - PubMed
  21. Acta Radiol. 2009 Jul;50(6):682-9 - PubMed
  22. J Cancer Res Clin Oncol. 2019 Apr;145(4):1037-1042 - PubMed
  23. Neuro Oncol. 2018 Mar 27;20(4):557-566 - PubMed
  24. Int J Cancer. 2011 Jul 1;129(1):245-55 - PubMed
  25. Lancet. 2017 Jan 7;389(10064):56-66 - PubMed
  26. AJNR Am J Neuroradiol. 2012 Oct;33(9):1763-70 - PubMed
  27. J Cell Physiol. 2015 Jan;230(1):131-9 - PubMed
  28. J Neurooncol. 2017 Oct;135(1):75-81 - PubMed
  29. Chem Sci. 2018 Jan 31;9(10):2674-2689 - PubMed
  30. Target Oncol. 2010 Sep;5(3):183-91 - PubMed
  31. AJNR Am J Neuroradiol. 2006 Apr;27(4):859-67 - PubMed
  32. AJNR Am J Neuroradiol. 2011 Aug;32(7):1301-1306 - PubMed
  33. Cancer Med. 2016 Nov;5(11):3176-3185 - PubMed
  34. J Clin Oncol. 2010 Sep 20;28(27):e477; author reply e478 - PubMed
  35. Clin Pharmacokinet. 2002;41(10):691-703 - PubMed
  36. J Clin Oncol. 2010 Apr 10;28(11):1963-72 - PubMed
  37. Neuro Oncol. 2013 Jan;15(1):4-27 - PubMed
  38. N Engl J Med. 2005 Mar 10;352(10):987-96 - PubMed
  39. N Engl J Med. 2014 Feb 20;370(8):709-22 - PubMed

Publication Types