Display options
Share it on

Bioessays. 2019 Dec;41(12):e1900126. doi: 10.1002/bies.201900126. Epub 2019 Nov 06.

Can Designer Indels Be Tailored by Gene Editing?: Can Indels Be Customized?.

BioEssays : news and reviews in molecular, cellular and developmental biology

Sara G Trimidal, Ronald Benjamin, Ji Eun Bae, Mira V Han, Elizabeth Kong, Aaron Singer, Tyler S Williams, Bing Yang, Martin R Schiller

Affiliations

  1. School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA.
  2. Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA.
  3. Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA.

PMID: 31693213 PMCID: PMC7202862 DOI: 10.1002/bies.201900126

Abstract

Genome editing with engineered nucleases (GEENs) introduce site-specific DNA double-strand breaks (DSBs) and repairs DSBs via nonhomologous end-joining (NHEJ) pathways that eventually create indels (insertions/deletions) in a genome. Whether the features of indels resulting from gene editing could be customized is asked. A review of the literature reveals how gene editing technologies via NHEJ pathways impact gene editing. The survey consolidates a body of literature that suggests that the type (insertion, deletion, and complex) and the approximate length of indel edits can be somewhat customized with different GEENs and by manipulating the expression of key NHEJ genes. Structural data suggest that binding of GEENs to DNA may interfere with binding of key components of DNA repair complexes, favoring either classical- or alternative-NHEJ. The hypotheses have some limitations, but if validated, will enable scientists to better control indel makeup, holding promise for basic science and clinical applications of gene editing. Also see the video abstract here https://youtu.be/vTkJtUsLi3w.

© 2019 WILEY Periodicals, Inc.

Keywords: CRISPR/Cas9; TALEN; double strand break; gene editing; meganuclease; non-homologous end joining; zinc finger nuclease

References

  1. Annu Rev Biochem. 2010;79:181-211 - PubMed
  2. Nat Struct Mol Biol. 2012 Jun 10;19(7):685-692 - PubMed
  3. Nature. 2001 Aug 9;412(6847):607-14 - PubMed
  4. Hum Mutat. 2003 Jan;21(1):28-44 - PubMed
  5. DNA Repair (Amst). 2013 Aug;12(8):620-36 - PubMed
  6. Prog Mol Biol Transl Sci. 2017;152:49-67 - PubMed
  7. Bioessays. 2016 Jul;38 Suppl 1:S4-S13 - PubMed
  8. Cancer Lett. 2006 Aug 18;240(1):1-8 - PubMed
  9. Nat Med. 2016 Jan;22(1):97-104 - PubMed
  10. Gene. 2013 Aug 10;525(2):174-81 - PubMed
  11. J Mol Biol. 2006 Apr 14;357(5):1383-93 - PubMed
  12. Mol Cell. 2012 Feb 10;45(3):292-302 - PubMed
  13. DNA Repair (Amst). 2012 Jan 2;11(1):22-34 - PubMed
  14. Nucleic Acids Res. 2012 Sep 1;40(17):8381-91 - PubMed
  15. Nucleic Acids Res. 2019 Jul 2;47(W1):W175-W182 - PubMed
  16. G3 (Bethesda). 2013 Oct 03;3(10):1717-25 - PubMed
  17. J Immunol. 2001 Aug 15;167(4):2142-50 - PubMed
  18. PLoS Genet. 2010 Feb 26;6(2):e1000855 - PubMed
  19. Nat Commun. 2016 Aug 17;7:12463 - PubMed
  20. Nat Biotechnol. 2011 Feb;29(2):143-8 - PubMed
  21. Genetics. 2010 Oct;186(2):757-61 - PubMed
  22. Nat Struct Mol Biol. 2009 Aug;16(8):814-8 - PubMed
  23. Genome Res. 2013 May;23(5):749-61 - PubMed
  24. J Immunol. 2013 Dec 1;191(11):5751-63 - PubMed
  25. Proc Natl Acad Sci U S A. 2012 Sep 25;109(39):E2579-86 - PubMed
  26. Mob Genet Elements. 2015 Oct 20;5(6):92-97 - PubMed
  27. Nucleic Acids Res. 2007;35(21):7209-21 - PubMed
  28. J Mol Biol. 2010 Jul 2;400(1):96-107 - PubMed
  29. Proc Natl Acad Sci U S A. 2011 Dec 20;108(51):20382-7 - PubMed
  30. Hum Mol Genet. 2010 Oct 15;19(R2):R131-6 - PubMed
  31. Annu Rev Genet. 2006;40:363-83 - PubMed
  32. Biochemistry. 2008 Jul 15;47(28):7548-56 - PubMed
  33. Nat Struct Mol Biol. 2011 Jan;18(1):75-9 - PubMed
  34. Trends Biotechnol. 2013 Jul;31(7):397-405 - PubMed
  35. Biophys J. 2010 Mar 3;98(5):852-60 - PubMed
  36. Mol Ther. 2013 Oct;21(10):1889-97 - PubMed
  37. Radiat Res. 2008 Aug;170(2):216-23 - PubMed
  38. DNA Repair (Amst). 2014 Sep;21:97-110 - PubMed
  39. Nature. 2014 Mar 6;507(7490):62-7 - PubMed
  40. Genome Res. 2006 Sep;16(9):1182-90 - PubMed
  41. DNA Repair (Amst). 2011 Jun 10;10(6):611-9 - PubMed
  42. Nucleic Acids Res. 2014 Jul;42(13):8816-29 - PubMed
  43. EMBO J. 2000 Apr 3;19(7):1731-42 - PubMed
  44. Science. 2009 Dec 11;326(5959):1501 - PubMed
  45. J Mol Biol. 2003 Apr 18;328(1):63-72 - PubMed
  46. PLoS One. 2012;7(9):e45383 - PubMed
  47. Science. 2013 Aug 23;341(6148):833-6 - PubMed
  48. PLoS Genet. 2009 Apr;5(4):e1000461 - PubMed
  49. Nucleic Acids Res. 2006 May 31;34(10):2998-3007 - PubMed
  50. Proc Natl Acad Sci U S A. 1995 Jan 3;92(1):320-4 - PubMed
  51. Nature. 2018 Nov;563(7733):646-651 - PubMed
  52. Proc Natl Acad Sci U S A. 1996 Feb 6;93(3):1156-60 - PubMed
  53. Nature. 2019 Mar;567(7746):E1-E2 - PubMed
  54. J Mol Biol. 2013 Nov 15;425(22):4334-52 - PubMed
  55. Protein Eng Des Sel. 2011 Jan;24(1-2):27-31 - PubMed
  56. Nucleic Acids Res. 2013 Jan 7;41(1):253-63 - PubMed
  57. Nucleic Acids Res. 2013 Sep;41(16):7771-82 - PubMed
  58. DNA Repair (Amst). 2008 Jun 1;7(6):983-9 - PubMed
  59. Biochemistry. 2010 Jul 27;49(29):6165-76 - PubMed
  60. Nat Commun. 2018 Nov 19;9(1):4856 - PubMed
  61. Nat Biomed Eng. 2018 Dec;2(12):892-893 - PubMed
  62. PLoS One. 2013 Nov 13;8(11):e78678 - PubMed
  63. PLoS Genet. 2013;9(9):e1003742 - PubMed
  64. Cancer Res. 2005 May 15;65(10):4020-30 - PubMed
  65. J Radiat Res. 2016 Aug;57 Suppl 1:i18-i24 - PubMed
  66. Proc Natl Acad Sci U S A. 2017 Jan 24;114(4):728-733 - PubMed
  67. Genome Res. 2013 Jul;23(7):1182-93 - PubMed
  68. F1000Prime Rep. 2014 Jan 02;6:3 - PubMed
  69. Sci Rep. 2013;3:2510 - PubMed
  70. Acta Naturae. 2014 Jul;6(3):19-40 - PubMed
  71. Mol Cell. 2004 Dec 3;16(5):701-13 - PubMed
  72. Cell. 2011 Apr 15;145(2):212-23 - PubMed
  73. Nucleic Acids Res. 2015 Sep 30;43(17):8352-67 - PubMed
  74. Nat Struct Mol Biol. 2009 Aug;16(8):819-24 - PubMed
  75. Nucleic Acids Res. 2013 Oct;41(19):9105-16 - PubMed
  76. J Mol Diagn. 2010 Sep;12(5):607-10 - PubMed
  77. Plant Cell. 2014 May 29;26(5):2156-2167 - PubMed
  78. Cleve Clin J Med. 2008 Jun;75(6):431-9 - PubMed
  79. Genome Biol. 2007;8 Suppl 1:S10 - PubMed
  80. Nat Struct Mol Biol. 2012 Jan 08;19(2):246-52 - PubMed
  81. PLoS Genet. 2014 Jan;10(1):e1004086 - PubMed
  82. Genome Biol. 2014 Jun 02;15(6):R80 - PubMed
  83. Nat Biotechnol. 2013 Sep;31(9):822-6 - PubMed
  84. J Genet Genomics. 2013 Jun 20;40(6):281-9 - PubMed
  85. Genes Dev. 1996 Sep 1;10(17):2158-66 - PubMed
  86. Nat Rev Genet. 2014 Sep;15(9):585-98 - PubMed
  87. Postepy Biochem. 2009;55(1):36-45 - PubMed
  88. EMBO J. 2001 May 15;20(10):2587-95 - PubMed
  89. Proc Natl Acad Sci U S A. 2016 Dec 27;113(52):14988-14993 - PubMed
  90. Nat Struct Mol Biol. 2010 Jan;17(1):11-6 - PubMed
  91. Proc Natl Acad Sci U S A. 2008 Nov 4;105(44):16888-93 - PubMed
  92. Nat Methods. 2013 Mar;10(3):185 - PubMed
  93. Sci Rep. 2013;3:1253 - PubMed
  94. Nucleic Acids Res. 1996 Nov 1;24(21):4123-32 - PubMed
  95. PLoS Genet. 2018 Sep 12;14(9):e1007652 - PubMed
  96. Hum Mutat. 2007 Jan;28(1):69-80 - PubMed
  97. J Biol Chem. 2013 Mar 29;288(13):8966-76 - PubMed
  98. PLoS One. 2015 May 06;10(5):e0125652 - PubMed
  99. Structure. 2010 Feb 10;18(2):177-87 - PubMed

Substances

MeSH terms

Publication Types

Grant support