Display options
Share it on

Front Physiol. 2019 Nov 20;10:1426. doi: 10.3389/fphys.2019.01426. eCollection 2019.

The Effect of Oxygen Limitation on a Xylophagous Insect's Heat Tolerance Is Influenced by Life-Stage Through Variation in Aerobic Scope and Respiratory Anatomy.

Frontiers in physiology

Marion Javal, Saskia Thomas, Philipp Lehmann, Madeleine G Barton, Desmond E Conlong, Anton Du Plessis, John S Terblanche

Affiliations

  1. Department of Conservation Ecology & Entomology, Faculty of AgriSciences, Centre for Invasion Biology, Stellenbosch University, Stellenbosch, South Africa.
  2. Department of Zoology, Stockholm University, Stockholm, Sweden.
  3. South African Sugarcane Research Institute, Mount Edgecombe, South Africa.
  4. CT Scanner Facility, Central Analytical Facilities, Stellenbosch University, Stellenbosch, South Africa.
  5. Physics Department, Stellenbosch University, Stellenbosch, South Africa.

PMID: 31824337 PMCID: PMC6879455 DOI: 10.3389/fphys.2019.01426

Abstract

Temperature has a profound impact on insect fitness and performance via metabolic, enzymatic or chemical reaction rate effects. However, oxygen availability can interact with these thermal responses in complex and often poorly understood ways, especially in hypoxia-adapted species. Here we test the hypothesis that thermal limits are reduced under low oxygen availability - such as might happen when key life-stages reside within plants - but also extend this test to attempt to explain that the magnitude of the effect of hypoxia depends on variation in key respiration-related parameters such as aerobic scope and respiratory morphology. Using two life-stages of a xylophagous cerambycid beetle,

Copyright © 2019 Javal, Thomas, Lehmann, Barton, Conlong, Du Plessis and Terblanche.

Keywords: Cacosceles newmannii; critical temperature; hypoxia; thermolimit respirometry; tracheal system

References

  1. Proc Biol Sci. 2010 Mar 22;277(1683):963-9 - PubMed
  2. J Exp Biol. 2011 Oct 1;214(Pt 19):3218-24 - PubMed
  3. Comp Biochem Physiol A Mol Integr Physiol. 2016 Feb;192:64-78 - PubMed
  4. Sci Rep. 2015 May 22;5:10436 - PubMed
  5. Biol Lett. 2019 Jan 31;15(1):20180701 - PubMed
  6. J Exp Biol. 2011 Oct 1;214(Pt 19):3225-37 - PubMed
  7. J Exp Biol. 2016 Oct 01;219(Pt 19):3061-3071 - PubMed
  8. Am J Physiol Regul Integr Comp Physiol. 2018 Nov 1;315(5):R879-R894 - PubMed
  9. J Insect Physiol. 1999 Aug;45(8):719-726 - PubMed
  10. Environ Entomol. 2009 Feb;38(1):242-9 - PubMed
  11. Science. 1997 Apr 4;276(5309):122-6 - PubMed
  12. Curr Opin Insect Sci. 2014 Oct;4:54-59 - PubMed
  13. J Exp Biol. 2004 Jun;207(Pt 13):2361-70 - PubMed
  14. Proc Natl Acad Sci U S A. 2003 Nov 25;100(24):14080-5 - PubMed
  15. J Exp Biol. 2015 Jun;218(Pt 11):1677-85 - PubMed
  16. J Exp Biol. 2010 Jul 1;213(Pt 13):2209-18 - PubMed
  17. J Exp Biol. 2018 Jun 21;221(Pt 12): - PubMed
  18. J Insect Physiol. 2014 Jul;66:20-7 - PubMed
  19. J Exp Biol. 2014 Dec 15;217(Pt 24):4433-5 - PubMed
  20. Biol Lett. 2005 Sep 22;1(3):346-9 - PubMed
  21. Ann N Y Acad Sci. 2016 Feb;1365(1):73-88 - PubMed
  22. Comp Biochem Physiol A Mol Integr Physiol. 2018 Feb;216:20-27 - PubMed
  23. J Exp Biol. 2018 Jul 1;221(Pt 13): - PubMed
  24. Proc Biol Sci. 2014 Mar 11;281(1782):20132927 - PubMed
  25. J Exp Biol. 2012 Jul 15;215(Pt 14):2524-33 - PubMed
  26. J Exp Biol. 2013 Dec 15;216(Pt 24):4703-11 - PubMed
  27. J Insect Physiol. 2015 Nov;82:75-84 - PubMed
  28. J Exp Biol. 2013 Dec 1;216(Pt 23):4495-7 - PubMed
  29. J Insect Physiol. 2018 Apr;106(Pt 3):179-188 - PubMed
  30. J Exp Biol. 2009 Oct 1;212(19):3132-41 - PubMed
  31. Nature. 2008 May 15;453(7193):353-7 - PubMed
  32. Arthropod Struct Dev. 2015 May;44(3):218-27 - PubMed
  33. J Insect Physiol. 2010 May;56(5):522-8 - PubMed
  34. PLoS One. 2011;6(9):e25025 - PubMed
  35. Annu Rev Entomol. 2018 Jan 7;63:303-325 - PubMed
  36. J Exp Biol. 2011 Nov 15;214(Pt 22):3713-25 - PubMed
  37. J Exp Biol. 2000 Dec;203(Pt 24):3809-20 - PubMed
  38. Comp Biochem Physiol A Mol Integr Physiol. 2017 Oct;212:15-23 - PubMed
  39. PLoS One. 2017 Jan 4;12(1):e0169371 - PubMed
  40. J Exp Biol. 2010 Mar 15;213(6):881-93 - PubMed
  41. Sci Rep. 2016 Sep 13;6:32856 - PubMed
  42. Integr Comp Biol. 2014 Jul;54(2):307-22 - PubMed
  43. Proc Biol Sci. 2019 May 15;286(1902):20190174 - PubMed
  44. Science. 1999 Jun 4;284(5420):1677-9 - PubMed
  45. J Evol Biol. 2012 Jun;25(6):1180-8 - PubMed
  46. J Insect Physiol. 2003 Aug;49(8):719-26 - PubMed
  47. Proc Natl Acad Sci U S A. 2016 Jan 19;113(3):680-5 - PubMed
  48. Am Nat. 2014 Dec;184(6):695-701 - PubMed
  49. Gigascience. 2017 Jun 1;6(6):1-11 - PubMed
  50. J Exp Biol. 2019 Jul 5;222(Pt 13):null - PubMed
  51. J Exp Biol. 2018 Jan 10;221(Pt 1): - PubMed
  52. J Exp Biol. 2001 Sep;204(Pt 17):2999-3007 - PubMed
  53. J Exp Biol. 2015 Jul;218(Pt 13):2083-8 - PubMed
  54. Philos Trans R Soc Lond B Biol Sci. 2012 Jun 19;367(1596):1665-79 - PubMed
  55. J Insect Physiol. 2001 Jun;47(6):533-542 - PubMed
  56. J Insect Physiol. 2016 Jan;84:137-153 - PubMed
  57. Biol Rev Camb Philos Soc. 2008 Aug;83(3):339-55 - PubMed
  58. J Exp Biol. 2012 Jul 1;215(Pt 13):2319-26 - PubMed
  59. J Exp Biol. 2004 May;207(Pt 11):1903-13 - PubMed
  60. Nature. 2005 Feb 3;433(7025):516-9 - PubMed
  61. J Exp Biol. 2014 Dec 15;217(Pt 24):4432-3 - PubMed
  62. Physiol Biochem Zool. 2013 Sep-Oct;86(5):576-87 - PubMed
  63. J Exp Biol. 2004 Jun;207(Pt 13):2267-76 - PubMed
  64. J Insect Physiol. 2010 Dec;56(12):1789-97 - PubMed
  65. J Exp Biol. 2009 Feb;212(Pt 3):424-8 - PubMed
  66. Proc Natl Acad Sci U S A. 2011 Aug 30;108(35):14664-9 - PubMed
  67. J Exp Biol. 2005 Apr;208(Pt 7):1385-92 - PubMed

Publication Types