Display options
Share it on

FEBS Lett. 2020 Apr;594(8):1319-1328. doi: 10.1002/1873-3468.13719. Epub 2019 Dec 29.

Increasing the targeting scope and efficiency of base editing with Proxy-BE strategy.

FEBS letters

Yin Liu, Guanglei Li, Guang Yang, Huifeng Gu, Shisheng Huang, Wenxia Yu, Guizhen Qin, Xinyi Liu, Fuling Zhou, Xingxu Huang, Yongchang Wei

Affiliations

  1. Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, China.
  2. School of Life Science and Technology, ShanghaiTech University, China.
  3. Department of Gastroenterology, Second Clinical Medical College, Jinan University, Shenzhen People's Hospital, China.
  4. Department of Hematology, Zhongnan Hospital of Wuhan University, China.

PMID: 31837228 DOI: 10.1002/1873-3468.13719

Abstract

Base editors (BEs) are widely used in precise gene editing due to their simplicity and versatility. However, their efficiencies are hindered by various obstacles. Considering the chromatin microenvironment as a possible obstacle, here, we demonstrate a further development of the proxy-clustered regularly interspaced short palindromic repeats strategy, termed Proxy-BE, to increase gene editing efficiency. Specifically, a nuclease-dead Cas9 (dCas9) was bound to the sequence about 20-30 base pair away from the target site, potentially improving access to the DNA and, thus, providing a better editing microenvironment for base editors. Our findings confirm that nuclease-dead Streptococcus pyogenes Cas9 can assist the base editors SaKKH-BE3 and dCpf1-BE to double their canonical base editing efficiency. This work provides a new approach to enhance base editing, extending its scope for biological research and gene therapy.

© 2019 Federation of European Biochemical Societies.

Keywords: CRISPR; Cas9; SaKKH-BE3; base editing; dCpf1-BE; gene editing

References

  1. Cong L, Ran FAa, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA et al. (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823. - PubMed
  2. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE and Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339, 823-826. - PubMed
  3. Hsu PD, Lander ES and Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157, 1262-1278. - PubMed
  4. Nelson CE, Hakim CH, Ousterout DG, Thakore PI, Moreb EA, Rivera RMC, Madhavan S, Pan X, Ran FA, Yan WX et al. (2015) In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science 351, 403-407. - PubMed
  5. Long C, Amoasii L, Mireault AA, McAnally JR, Li H, Sanchez-Ortiz E, Bhattacharyya S, Shelton JM, Bassel-Duby R and Olson E n (2015) Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science 351, 400-403. - PubMed
  6. Tabebordbar M, Zhu K, Cheng JKW, Chew Wl, Widrick JJ, Yan WX, Maesner C, Wu EY, Xiao R, Ran FA et al. (2015) In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science 351, 407-411. - PubMed
  7. Amoasii L, Hildyard JCW, Li H, Sanchez-Ortiz E, Mireault A, Caballero D, Harron R, Stathopoulou T-R, Massey C, Shelton JM et al. (2018) Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy. Science 362, 86-91. - PubMed
  8. Nunez JK, Harrington LB and Doudna JA (2016) Chemical and biophysical modulation of Cas9 for tunable genome engineering. ACS Chem Biol 11, 681-688. - PubMed
  9. Kosicki M, Tomberg K and Bradley A (2018) Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nat Biotechnol 36, 765-771. - PubMed
  10. Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK and Sander JD (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31, 822-826. - PubMed
  11. Komor AC, Kim YB, Packer MS, Zuris JA and Liu DR (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420-424. - PubMed
  12. Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI and Liu DR (2017) Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage. Nature 551, 464-471. - PubMed
  13. Rees HA and Liu DR (2018) Base editing: precision chemistry on the genome and transcriptome of living cells. Nat Rev Genet 19, 770-788. - PubMed
  14. Kim K, Ryu S-M, Kim S-T, Baek G, Kim D, Lim K, Chung E, Kim S and Kim J-S (2017) Highly efficient RNA-guided base editing in mouse embryos. Nat Biotechnol 35, 435-437. - PubMed
  15. Zong Y, Wang Y, Li C, Zhang R, Chen K, Ran Y, Qiu J-L, Wang D and Gao C (2017) Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat Biotechnol 35, 438-440. - PubMed
  16. Zhang Y, Qin W, Lu X, Xu J, Huang H, Bai H, Li S and Lin S (2017) Programmable base editing of zebrafish genome using a modified CRISPR-Cas9 system. Nat Commun 8, 118. - PubMed
  17. Liu Z, Lu Z, Yang G, Huang S, Li G, Feng S, Liu Y, Li J, Yu W, Zhang Y et al. (2018) Efficient generation of mouse models of human diseases via ABE- and BE-mediated base editing. Nat Commun 9, 2338. - PubMed
  18. Li G, Liu Y, Zeng Y, Li J, Wang L, Yang G, Chen D, Shang X, Chen J, Huang X et al. (2017) Highly efficient and precise base editing in discarded human tripronuclear embryos. Protein Cell 8, 776-779. - PubMed
  19. Yang G, Zhou C, Wang R, Huang S, Wei Y, Yang X, Liu Y, Li J, Lu Z, Ying W et al. (2019) Base-editing-mediated R17H substitution in histone H3 reveals methylation-dependent regulation of yap signaling and early mouse embryo development. Cell Rep 26, 302-312.e4 - PubMed
  20. Ryu SM, Koo T, Kim K, Lim K, Baek G, Kim S-T, Kim HS, Kim D-e, Lee H, Chung E et al. (2018) Adenine base editing in mouse embryos and an adult mouse model of Duchenne muscular dystrophy. Nat Biotechnol 36, 536-539. - PubMed
  21. Zeng Y, Li J, Li G, Huang S, Yu W, Zhang Y, Chen D, Chen J, Liu J and Huang X (2018) Correction of the Marfan syndrome pathogenic FBN1 mutation by base editing in human cells and heterozygous embryos. Mol Ther 26, 2631-2637. - PubMed
  22. Jensen KT, Floe L, Petersen TS, Huang J, Xu F, Bolund L, Luo Y and Lin L (2017) Chromatin accessibility and guide sequence secondary structure affect CRISPR-Cas9 gene editing efficiency. FEBS Lett 591, 1892-1901. - PubMed
  23. Kim YB, Komor AC, Levy JM, Packer MS, Zhao KT and Liu DR (2017) Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nat Biotechnol 35, 371-376. - PubMed
  24. Li X, Wang Y, Liu Y, Yang B, Wang X, Wei J, Lu Z, Zhang Y, Wu J, Huang X et al. (2018) Base editing with a Cpf1-cytidine deaminase fusion. Nat Biotechnol 36, 324-327. - PubMed
  25. Wang X, Li J, Wang Y, Yang B, Wei J, Wu J, Wang R, Huang X, Chen J and Yang L (2018) Efficient base editing in methylated regions with a human APOBEC3A-Cas9 fusion. Nat Biotechnol 36, 946-949. - PubMed
  26. Koblan LW, Doman JL, Wilson C, Levy JM, Tay T, Newby GA, Maianti JP, Raguram A and Liu DR (2018) Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction. Nat Biotechnol 36, 843-846. - PubMed
  27. Jiang W, Feng S, Huang S, Yu W, Li G, Yang G, Liu Y, Zhang Y, Zhang L, Hou Y et al. (2018) BE-PLUS: a new base editing tool with broadened editing window and enhanced fidelity. Cell Res 28, 855-861. - PubMed
  28. Chen F, Ding X, Feng Y, Seebeck T, Jiang Y and Davis GD (2017) Targeted activation of diverse CRISPR-Cas systems for mammalian genome editing via proximal CRISPR targeting. Nat Commun 8, 14958. - PubMed
  29. Hu JH, Miller SM, Geurts MH, Tang W, Chen L, Sun N, Zeina CM, Gao X, Rees HA, Lin Z et al. (2018) Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 556, 57-63. - PubMed
  30. Verkuijl SA and Rots MG (2019) The influence of eukaryotic chromatin state on CRISPR-Cas9 editing efficiencies. Curr Opin Biotechnol 55, 68-73. - PubMed
  31. Yarrington RM, Verma S, Schwartz S, Trautman JK and Carroll D (2018) Nucleosomes inhibit target cleavage by CRISPR-Cas9 in vivo. Proc Natl Acad Sci USA 115, 9351-9358. - PubMed
  32. Janssen JM, Chen X, Liu J and Gonçalves MAFV (2019) The chromatin structure of CRISPR-Cas9 target DNA controls the balance between mutagenic and homology-directed gene-editing events. Molecular Therapy - Nucleic Acids 16, 141-154. - PubMed
  33. Daer R, Barrett CM and Haynes KA (2018) Manipulation of chromatin to enhance CRISPR activity. bioRxiv [PREPRINT]. - PubMed

Substances

MeSH terms

Publication Types