Display options
Share it on

Nat Nanotechnol. 2020 Apr;15(4):289-295. doi: 10.1038/s41565-019-0622-8. Epub 2020 Jan 20.

Large-area single-crystal AB-bilayer and ABA-trilayer graphene grown on a Cu/Ni(111) foil.

Nature nanotechnology

Ming Huang, Pavel V Bakharev, Zhu-Jun Wang, Mandakini Biswal, Zheng Yang, Sunghwan Jin, Bin Wang, Hyo Ju Park, Yunqing Li, Deshun Qu, Youngwoo Kwon, Xianjue Chen, Sun Hwa Lee, Marc-Georg Willinger, Won Jong Yoo, Zonghoon Lee, Rodney S Ruoff

Affiliations

  1. Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, Republic of Korea.
  2. School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea.
  3. Scientific Center for Optical and Electron Microscopy, ETH Zürich, Zürich, Switzerland.
  4. Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society, Berlin-Dahlem, Germany.
  5. SKKU Advanced Institute of Nano-Technology, Department of Nano Science and Technology, Sungkyunkwan University, Suwon, Republic of Korea.
  6. Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, Republic of Korea. [email protected].
  7. School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea. [email protected].
  8. Department of Chemistry, UNIST, Ulsan, Republic of Korea. [email protected].
  9. School of Energy and Chemical Engineering, UNIST, Ulsan, Republic of Korea. [email protected].

PMID: 31959931 DOI: 10.1038/s41565-019-0622-8

Abstract

High-quality AB-stacked bilayer or multilayer graphene larger than a centimetre has not been reported. Here, we report the fabrication and use of single-crystal Cu/Ni(111) alloy foils with controllable concentrations of Ni for the growth of large-area, high-quality AB-stacked bilayer and ABA-stacked trilayer graphene films by chemical vapour deposition. The stacking order, coverage and uniformity of the graphene films were evaluated by Raman spectroscopy and transmission electron microscopy including selected area electron diffraction and atomic resolution imaging. Electrical transport (carrier mobility and band-gap tunability) and thermal conductivity (the bilayer graphene has a thermal conductivity value of about 2,300 W m

References

  1. Zhang, Y. et al. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820–823 (2009). - PubMed
  2. Oostinga, J. B., Heersche, H. B., Liu, X., Morpurgo, A. F. & Vandersypen, L. M. Gate-induced insulating state in bilayer graphene devices. Nat. Mater. 7, 151–157 (2008). - PubMed
  3. Li, X. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009). - PubMed
  4. Yan, K., Peng, H., Zhou, Y., Li, H. & Liu, Z. Formation of bilayer bernal graphene: layer-by-layer epitaxy via chemical vapor deposition. Nano Lett. 11, 1106–1110 (2011). - PubMed
  5. Zhou, H. et al. Chemical vapour deposition growth of large single crystals of monolayer and bilayer graphene. Nat. Commun. 4, 2096 (2013). - PubMed
  6. Liu, L. et al. High-yield chemical vapor deposition growth of high-quality large-area AB-stacked bilayer graphene. ACS Nano 6, 8241–8249 (2012). - PubMed
  7. Zhao, P. et al. Equilibrium chemical vapor deposition growth of Bernal-stacked bilayer graphene. ACS Nano 8, 11631–11638 (2014). - PubMed
  8. Nie, S. et al. Growth from below: graphene bilayers on Ir (111). ACS Nano 5, 2298–2306 (2011). - PubMed
  9. Sutter, P., Ciobanu, C. V. & Sutter, E. Real‐time microscopy of graphene growth on epitaxial metal films: role of template thickness and strain. Small 8, 2250–2257 (2012). - PubMed
  10. Sutter, P., Hybertsen, M., Sadowski, J. & Sutter, E. Electronic structure of few-layer epitaxial graphene on Ru (0001). Nano Lett. 9, 2654–2660 (2009). - PubMed
  11. López, G. & Mittemeijer, E. The solubility of C in solid Cu. Scr. Mater. 51, 1–5 (2004). - PubMed
  12. Sung, C.-M. & Tai, M.-F. Reactivities of transition metals with carbon: implications to the mechanism of diamond synthesis under high pressure. Int. J. Refract. Met. Hard Mater. 15, 237–256 (1997). - PubMed
  13. Chen, S. et al. Synthesis and characterization of large-area graphene and graphite films on commercial Cu–Ni alloy foils. Nano Lett. 11, 3519–3525 (2011). - PubMed
  14. Wu, Y. et al. Growth mechanism and controlled synthesis of AB-stacked bilayer graphene on Cu–Ni alloy foils. ACS Nano 6, 7731–7738 (2012). - PubMed
  15. Liu, X. et al. Segregation growth of graphene on Cu–Ni alloy for precise layer control. J. Phys. Chem. C. 115, 11976–11982 (2011). - PubMed
  16. Takesaki, Y. et al. Highly uniform bilayer graphene on epitaxial Cu-Ni(111) alloy. Chem. Mater. 18, 4583–4592 (2016). - PubMed
  17. Chernozatonskii, L. A., Sorokin, P. B., Kvashnin, A. Ge & Kvashnin, D. Ge Diamond-like C - PubMed
  18. Odkhuu, D., Shin, D., Ruoff, R. S. & Park, N. Conversion of multilayer graphene into continuous ultrathin sp - PubMed
  19. Kvashnin, A. G., Chernozatonskii, L. A., Yakobson, B. I. & Sorokin, P. B. Phase diagram of quasi-two-dimensional carbon, from graphene to diamond. Nano Lett. 14, 676–681 (2014). - PubMed
  20. Bakharev, P. V. et al. Chemically induced transformation of chemical vapour deposition grown bilayer graphene into fluorinated single-layer diamond. Nat. Nanotechnol. https://doi.org/10.1038/s41565-019-0582-z (2019). - PubMed
  21. Huang, M. et al. Highly oriented monolayer graphene grown on a Cu/Ni(111) alloy foil. ACS Nano 12, 6117–6127 (2018). - PubMed
  22. Jin, S. et al. Colossal grain growth yields single-crystal metal foils by contact-free annealing. Science 362, 1021–1025 (2018). - PubMed
  23. Lee, S., Lee, K. & Zhong, Z. Wafer scale homogeneous bilayer graphene films by chemical vapor deposition. Nano Lett. 10, 4702–4707 (2010). - PubMed
  24. Graf, D. et al. Spatially resolved Raman spectroscopy of single-and few-layer graphene. Nano Lett. 7, 238–242 (2007). - PubMed
  25. Ferrari, A. C. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006). - PubMed
  26. Gupta, A., Chen, G., Joshi, P., Tadigadapa, S. & Eklund, P. Raman scattering from high-frequency phonons in supported n-graphene layer films. Nano Lett. 6, 2667–2673 (2006). - PubMed
  27. Nicholson, M. The solubility of carbon in nickel-copper alloy at 1000 °C. Trans. Metall. Soc. AIME 224, 533–535 (1962). - PubMed
  28. Wu, T. et al. Fast growth of inch-sized single-crystalline graphene from a controlled single nucleus on Cu-Ni alloys. Nat. Mater. 15, 43–47 (2016). - PubMed
  29. Nguyen, V. L. et al. Wafer‐scale single‐crystalline AB‐stacked bilayer graphene. Adv. Mater. 28, 8177–8183 (2016). - PubMed
  30. Suh, Y., Park, S. & Kim, M. High resolution TEM and electron diffraction study of graphene layers. Microsc. Microanal. 15, 1168–1169 (2009). - PubMed
  31. Meyer, J. C. et al. The structure of suspended graphene sheets. Nature 446, 60–63 (2007). - PubMed
  32. Li, Q. et al. Growth of adlayer graphene on Cu studied by carbon isotope labeling. Nano Lett. 13, 486–490 (2013). - PubMed
  33. Wang, Z.-J. et al. Stacking sequence and interlayer coupling in few-layer graphene revealed by in situ imaging. Nat. Commun. 7, 13256 (2016). - PubMed
  34. Nair, R. R. et al. Fine structure constant defines visual transparency of graphene. Science 320, 1308–1308 (2008). - PubMed
  35. Bae, S. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5, 574–578 (2010). - PubMed
  36. Wang, G. et al. Synthesis of layer‐tunable graphene: a combined kinetic implantation and thermal ejection approach. Adv. Funct. Mater. 25, 3666–3675 (2015). - PubMed
  37. Liu, W. et al. Controllable and rapid synthesis of high-quality and large-area Bernal stacked bilayer graphene using chemical vapor deposition. Chem. Mater. 26, 907–915 (2013). - PubMed
  38. Xia, F., Farmer, D. B., Lin, Y.-m & Avouris, P. Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Lett. 10, 715–718 (2010). - PubMed
  39. Hao, Y. et al. Oxygen-activated growth and bandgap tunability of large single-crystal bilayer graphene. Nat. Nanotechnol. 11, 426–431 (2016). - PubMed
  40. Balandin, A. A. et al. Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008). - PubMed
  41. Li, H. et al. Thermal conductivity of twisted bilayer graphene. Nanoscale 6, 13402–13408 (2014). - PubMed
  42. Limbu, T. B. et al. Grain size-dependent thermal conductivity of polycrystalline twisted bilayer graphene. Carbon 117, 367–375 (2017). - PubMed
  43. Ghosh, S. et al. Dimensional crossover of thermal transport in few-layer graphene. Nat. Mater. 9, 555–558 (2010). - PubMed
  44. Wang, B. et al. Camphor‐enabled transfer and mechanical testing of centimeter‐scale ultrathin films. Adv. Mater. 30, 1800888 (2018). - PubMed
  45. Hosseinian, E. & Pierron, O. N. Quantitative in situ TEM tensile fatigue testing on nanocrystalline metallic ultrathin films. Nanoscale 5, 12532–12541 (2013). - PubMed
  46. Emery, R. & Povirk, G. Tensile behavior of free-standing gold films. Part II: fine-grain films. Acta Mater. 51, 2079–2087 (2003). - PubMed
  47. Kim, J.-H. et al. Tensile testing of ultra-thin films on water surface. Nat. Commun. 4, 2520 (2013). - PubMed
  48. Chen, X., Kirsch, B. L., Senter, R., Tolbert, S. H. & Gupta, V. Tensile testing of thin films supported on compliant substrates. Mech. Mater. 41, 839–848 (2009). - PubMed
  49. Macionczyk, F., Brückner, W. & Reiss, G. Stress-strain curves by tensile testing of thin metallic films on thin polyimide foils: Al, AlCu, CuNi(Mn). Mater. Res. Soc. Symp. Proc. 505, 235–240 (1997). - PubMed
  50. Lee, C., Wei, X., Kysar, J. W. & Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008). - PubMed
  51. Neek-Amal, M. & Peeters, F. Nanoindentation of a circular sheet of bilayer graphene. Phys. Rev. B. 81, 235421 (2010). - PubMed
  52. Wang, L. & Zhang, Q. Elastic behavior of bilayer graphene under in-plane loadings. Curr. Appl. Phys. 12, 1173–1177 (2012). - PubMed
  53. Zhang, P. et al. Fracture toughness of graphene. Nat. Commun. 5, 3782 (2014). - PubMed

Publication Types