Display options
Share it on

Adv Mater. 2020 Feb;32(7):e1906497. doi: 10.1002/adma.201906497. Epub 2020 Jan 13.

Stabilizing Surface Passivation Enables Stable Operation of Colloidal Quantum Dot Photovoltaic Devices at Maximum Power Point in an Air Ambient.

Advanced materials (Deerfield Beach, Fla.)

Jongmin Choi, Min-Jae Choi, Junghwan Kim, Filip Dinic, Petar Todorovic, Bin Sun, Mingyang Wei, Se-Woong Baek, Sjoerd Hoogland, F Pelayo García de Arquer, Oleksandr Voznyy, Edward H Sargent

Affiliations

  1. Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada.
  2. Department of Physical and Environmental Sciences, University of Toronto, 1065, Military Trail, Toronto, Ontario, M1C 1A4, Canada.

PMID: 31930771 DOI: 10.1002/adma.201906497

Abstract

Colloidal quantum dots (CQDs) are promising materials for photovoltaic (PV) applications owing to their size-tunable bandgap and solution processing. However, reports on CQD PV stability have been limited so far to storage in the dark; or operation illuminated, but under an inert atmosphere. CQD PV devices that are stable under continuous operation in air have yet to be demonstrated-a limitation that is shown here to arise due to rapid oxidation of both CQDs and surface passivation. Here, a stable CQD PV device under continuous operation in air is demonstrated by introducing additional potassium iodide (KI) on the CQD surface that acts as a shielding layer and thus stands in the way of oxidation of the CQD surface. The devices (unencapsulated) retain >80% of their initial efficiency following 300 h of continuous operation in air, whereas CQD PV devices without KI lose the amount of performance within just 21 h. KI shielding also provides improved surface passivation and, as a result, a higher power conversion efficiency (PCE) of 12.6% compared with 11.4% for control devices.

© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Keywords: colloidal quantum dots; continuous operation; device stability; oxidation; solar cells

References

  1. S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, E. H. Sargent, Nat. Mater. 2005, 4, 138. - PubMed
  2. O. E. Semonin, J. M. Luther, S. Choi, H. Y. Chen, J. Gao, A. J. Nozik, M. C. Beard, Science 2011, 334, 1530. - PubMed
  3. W. K. Bae, J. Joo, L. A. Padilha, J. Won, D. C. Lee, Q. Lin, W.-K. Koh, H. Luo, V. I. Klimov, J. M. Pietryga, J. Am. Chem. Soc. 2012, 134, 20160. - PubMed
  4. V. M. Wood, J. Panzer, J. Chen, M. S. Bradley, J. E. Halpert, M. G. Bawendi, V. Bulović, Adv. Mater. 2009, 21, 2151. - PubMed
  5. K. Jeonghun, K. B. Wan, D. G. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, C. Lee, Nano Lett. 2012, 12, 2362. - PubMed
  6. S. Y. Jeong, S. C. Lim, D. J. Bae, Y. H. Lee, H. J. Shin, S.-M. Yoon, J. Y. Choi, O. H. Cha, M. S. Jeong, D. Perello, M. Yun, Appl. Phys. Lett. 2008, 92, 243103. - PubMed
  7. S. Yang, N. Zhao, L. Zhang, H. Zhong, R. Liu, B. Zou, Nanotechnology 2012, 23, 255203. - PubMed
  8. G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, E. H. Sargent, Nature 2006, 442, 180. - PubMed
  9. J.-S. Lee, M. V. Kovalenko, J. Huang, D. S. Chung, D. V. Talapin, Nat. Nanotechnol. 2011, 6, 348. - PubMed
  10. A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. Ning, A. J. Labelle, K. W. Chou, A. Amassian, E. H. Sargent, Nat. Nanotechnol. 2012, 7, 577. - PubMed
  11. C.-H. M. Chuang, P. R. Brown, V. Bulović, M. G. Bawendi, Nat. Mater. 2014, 13, 796. - PubMed
  12. M. Liu, O. Voznyy, R. Sabatini, F. P. Garcia de Arquer, R. Munir, A. H. Balawi, X. Lan, F. Fan, G. Walters, A. R. Kirmani, S. Hoogland, F. Laquai, A. Amassian, E. H. Sargent, Nat. Mater. 2017, 16, 258. - PubMed
  13. J. Choi, Y. Kim, J. W. Jo, J. Kim, B. Sun, G. Walters, F. P. García de Arquer, R. Quintero-Bermudez, Y. Li, C. S. Tan, L. N. Quan, A. P. T. Kam, S. Hoogland, Z. Lu, O. Voznyy, E. H. Sargent, Adv. Mater. 2017, 29, 1702350. - PubMed
  14. A. G. Pattantyus-Abraham, I. J. Kramer, A. R. Barkhouse, X. H. Wang, G. Konstantatos, R. Debnath, L. Levina, I. Raabe, M. K. Nazeeruddin, M. Gratzel, E. H. Sargent, ACS Nano 2010, 4, 3374. - PubMed
  15. G.-H. Kim, B. Walker, H.-B. Kim, J. Y. Kim, and E. H. Sargent, J. Park, Adv. Mater. 2014, 26, 3321. - PubMed
  16. M.-J. Choi, S. Kim, H. Lim, J. Choi, D. M. Sim, S. Yim, B. T. Ahn, J. Y. Kim, Y. S. Jung, Adv. Mater. 2016, 28, 1780. - PubMed
  17. J. Choi, J. W. Jo, F. P. G. Arquer, Y.-B. Zhao, B. Sun, J. Kim, M.-J. Choi, S.-W. Baek, A. H. Proppe, A. Seifitokaldani, D.-H. Nam, P. Li, O. Ouellette, Y. Kim, O. Voznyy, S. Hoogland, S. O. Kelley, Z.-H. Lu, E. H. Sargent, Adv. Mater. 2018, 30, 1801720. - PubMed
  18. J. Xu, O. Voznyy, M. Liu, A. R. Kirmani, G. Walters, R. Munir, M. Abdelsamie, A. H. Proppe, A. Sarkar, F. P. Garcia de Arquer, M. Wei, B. Sun, M. Liu, O. Ouellette, R. Quintero-Bermudez, J. Li, J. Fan, L. Quan, P. Todorovic, H. Tan, S. Hoogland, S. O. Kelley, M. Stefik, A. Amassian, E. H. Sargent, Nat. Nanotechnol. 2018, 13, 456. - PubMed
  19. Z. Ning, O. Voznyy, J. Pan, S. Hoogland, V. Adinolfi, J. Xu, M. Li, A. R. Kirmani, J.-P. Sun, J. Minor, K. W. Kemp, H. Dong, L. Rollny, A. Labelle, G. Carey, B. Sutherland, I. Hill, A. Amassian, H. Liu, J. Tang, O. M. Bakr, E. H. Sargent, Nat. Mater. 2014, 13, 822. - PubMed
  20. J. Y. Woo, J.-H. Ko, J. H. Song, K. Kim, H. Choi, Y.-H. Kim, D. C. Lee, S. Jeong, J. Am. Chem. Soc. 2014, 136, 8883. - PubMed
  21. J. Zhang, J. Gao, E. M. Miller, J. M. Luther, M. C. Beard, ACS Nano 2014, 8, 614. - PubMed
  22. S.-W. Baek, S. H. Lee, J. H. Song, C. Kim, Y. S. Ha, H. Shin, H. Kim, S. Jeong, J. Y. Lee, Energy Environ. Sci. 2018, 11, 2078. - PubMed
  23. Y. Cao, A. Stavrinadis, T. Lasanta, D. So, G. Konstantatos, Nat. Energy 2016, 1, 16035. - PubMed
  24. X. Zhang, J. Zhang, D. Phuyal, J. Du, L. Tian, V. A. Öberg, M. B. Johansson, U. B. Cappel, O. Karis, J. Liu, H. Rensmo, G. Boschloo, E. M. J. Johansson, Adv. Energy Mater. 2018, 8, 1702049. - PubMed
  25. J. Tang, L. Brzozowski, D. A. R. Barkhouse, X. Wang, R. Debnath, R. Wolowiec, E. Palmiano, L. Levina, A. G. Pattantyus-Abraham, D. Jamakosmanovic, E. H. Sargent, ACS Nano 2010, 4, 869. - PubMed
  26. A. Stavrinadis, G. Konstantatos, ChemPhysChem 2016, 17, 632. - PubMed
  27. M.-J. Choi, J. Oh, J.-K. Yoo, J. Choi, D. M. Sim, Y. S. Jung, Energy Environ. Sci. 2014, 7, 3052. - PubMed
  28. N. Zhao, T. P. Osedach, L.-Y. Chang, S. M. Geyer, D. Wanger, M. T. Binda, A. C. Arango, M. G. Bawendi, V. Bulovic, ACS Nano 2010, 4, 3743. - PubMed
  29. D. Zhitomirsky, O. Voznyy, S. Hoogland, E. H. Sargent, ACS Nano 2013, 7, 5282. - PubMed
  30. J. VandeVondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing, J. Hutter, Comput. Phys. Commun. 2005, 167, 103. - PubMed
  31. J. VandeVondele, J. Hutter, J. Chem. Phys. 2007, 127, 114105. - PubMed
  32. C. Hartwigsen, S. Goedecker, J. Hutter, Phys. Rev. B 1998, 58, 3641. - PubMed
  33. J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865. - PubMed
  34. O. Voznyy, D. Zhitomirsky, P. Stadler, Z. Ning, S. Hoogland, E. H. Sargent, ACS Nano 2012, 6, 8448. - PubMed
  35. C. Loken, D. Gruner, L. Groer, R. Peltier, N. Bunn, M. Craig, T. Henriques, J. Dempsey, C.-H. Yu, J. Chen, L. J. Dursi, J. Chong, S. Northrup, J. Pinto, N. Knecht, R. V. Zon, J. Phys.: Conf. Ser. 2010, 256, 012026. - PubMed

Publication Types

Grant support