Display options
Share it on

Cytotechnology. 2020 Apr;72(2):189-202. doi: 10.1007/s10616-019-00365-8. Epub 2020 Jan 28.

In vitro induction of quiescence in isolated primary human myoblasts.

Cytotechnology

Kirankumar B Gudagudi, Niccolò Passerin d'Entrèves, Nicholas J Woudberg, Paul J Steyn, Kathryn H Myburgh

Affiliations

  1. Department of Physiological Sciences, Stellenbosch University, Matieland, Private Bag X1, Stellenbosch, 7602, South Africa.
  2. Department of Human Biology, University of Cape Town, Anzio Road, Observatory, South Africa.
  3. Department of Physiological Sciences, Stellenbosch University, Matieland, Private Bag X1, Stellenbosch, 7602, South Africa. [email protected].

PMID: 31993891 PMCID: PMC7192999 DOI: 10.1007/s10616-019-00365-8

Abstract

Adult skeletal muscle stem cells, satellite cells, remain in an inactive or quiescent state in vivo under physiological conditions. Progression through the cell cycle, including activation of quiescent cells, is a tightly regulated process. Studies employing in vitro culture of satellite cells, primary human myoblasts (PHMs), necessitate isolation myoblasts from muscle biopsies. Further studies utilizing these cells should endeavour to represent their native in vivo characteristics as closely as possible, also considering variability between individual donors. This study demonstrates the approach of utilizing KnockOut™ Serum Replacement (KOSR)-supplemented culture media as a quiescence-induction media for 10 days in PHMs isolated and expanded from three different donors. Cell cycle analysis demonstrated that treatment resulted in an increase in G

Keywords: Cell cycle inhibition; Isolation; Primary human myoblasts; Quiescence

References

  1. Sports Med. 2008;38(11):947-69 - PubMed
  2. Cell Stem Cell. 2008 Jan 10;2(1):22-31 - PubMed
  3. Cell. 2004 Mar 19;116(6):769-78 - PubMed
  4. Dev Biol. 2007 Dec 1;312(1):13-28 - PubMed
  5. Biotechnol J. 2018 Feb;13(2): - PubMed
  6. Biopreserv Biobank. 2019 Aug;17(4):342-351 - PubMed
  7. Cell. 2009 May 1;137(3):413-31 - PubMed
  8. Stem Cells. 2015 Mar;33(3):951-61 - PubMed
  9. Nature. 2008 Nov 27;456(7221):502-6 - PubMed
  10. Genes Dev. 1996 May 15;10(10):1173-83 - PubMed
  11. J Orthop Res. 2007 Aug;25(8):1029-41 - PubMed
  12. Stem Cell Res. 2018 Jul;30:122-129 - PubMed
  13. Bio Protoc. 2017 Nov 5;7(21): - PubMed
  14. In Vitro Cell Dev Biol Anim. 1996 Feb;32(2):90-9 - PubMed
  15. ALTEX. 2010;27(1):53-62 - PubMed
  16. J Cell Sci. 2012 Mar 1;125(Pt 5):1309-17 - PubMed
  17. J Biophys Biochem Cytol. 1961 Feb;9:493-5 - PubMed
  18. Dev Biol. 1996 Apr 10;175(1):84-94 - PubMed
  19. Yakugaku Zasshi. 2011;131(9):1329-32 - PubMed
  20. J Cell Biol. 1999 Feb 22;144(4):631-43 - PubMed
  21. PLoS One. 2013 May 23;8(5):e64067 - PubMed
  22. Bio Protoc. 2017 May 5;7(9): - PubMed
  23. Proc Natl Acad Sci U S A. 1988 Sep;85(18):6792-6 - PubMed
  24. Proc Natl Acad Sci U S A. 2007 Oct 16;104(42):16552-7 - PubMed
  25. Cell Stem Cell. 2012 Jul 6;11(1):118-26 - PubMed
  26. PLoS One. 2015 Oct 16;10(10):e0140585 - PubMed
  27. Cell Transplant. 2012;21(1):153-73 - PubMed
  28. J Cell Biol. 1994 Jun;125(6):1275-87 - PubMed
  29. J Histochem Cytochem. 2010 Nov;58(11):941-55 - PubMed
  30. Cell Mol Life Sci. 2001 Apr;58(4):571-9 - PubMed
  31. Cell Rep. 2013 Jul 11;4(1):189-204 - PubMed
  32. Int J Mol Sci. 2019 Oct 24;20(21): - PubMed
  33. J Vis Exp. 2015 Jan 12;(95):52049 - PubMed
  34. J Biol Chem. 1990 Jun 5;265(16):9015-21 - PubMed
  35. Genes Dev. 1990 Sep;4(9):1454-61 - PubMed

Publication Types

Grant support