Display options
Share it on

Pharmaceutics. 2020 Feb 03;12(2). doi: 10.3390/pharmaceutics12020120.

Growth Factors Delivery System for Skin Regeneration: An Advanced Wound Dressing.

Pharmaceutics

Marta Nardini, Sara Perteghella, Luca Mastracci, Federica Grillo, Giorgio Marrubini, Elia Bari, Matteo Formica, Chiara Gentili, Ranieri Cancedda, Maria Luisa Torre, Maddalena Mastrogiacomo

Affiliations

  1. Department of Internal Medicine (DIMI), University of Genova, viale Benedetto XV 10, 16132 Genova, Italy.
  2. Biotherapy Unit, Ospedale Policlinico San Martino IRCCS, largo Rosanna Benzi 10, 16132 Genova, Italy.
  3. Department of Drug Sciences, University of Pavia, viale Taramelli 12, 27100 Pavia, Italy.
  4. Ospedale Policlinico San Martino IRCCS, largo Rosanna Benzi 10, 16132 Genova, Italy.
  5. Anatomic Pathology, Department of Integrated Surgical and Diagnostic Sciences (DISC), University of Genova, viale Benedetto XV 6, 16132 Genova, Italy.
  6. Orthopedic Clinic, Department of Integrated Surgical and Diagnostic Sciences (DISC), University of Genova viale Benedetto XV 6, 16132 Genova, Italy.
  7. Regenerative Medicine Laboratory, Department of Experimental Medicine (DIMES), University of Genova, via Leon Battista Alberti 2, 16132 Genova, Italy.
  8. Center for Biomedical Research (CEBR), University of Genova, viale Benedetto XV 9, 16132 Genova, Italy.
  9. Endolife S.r.l., Piazza della Vittoria 15/23, 16121 Genova, Italy.

PMID: 32028579 PMCID: PMC7076531 DOI: 10.3390/pharmaceutics12020120

Abstract

Standard treatments of chronic skin ulcers based on the direct application of dressings still present several limits with regard to a complete tissue regeneration. Innovative strategies in tissue engineering offer materials that can tune cell behavior and promote growth tissue favoring cell recruitment in the early stages of wound healing. A combination of Alginate (Alg), Sericin (SS) with Platelet Lysate (PL), as a freeze-dried sponge, is proposed to generate a bioactive wound dressing to care skin lesions. Biomembranes at different composition were tested for the release of platelet growth factors, cytotoxicity, protective effects against oxidative stress and cell proliferation induction. The highest level of the growth factors release occurred within 48 h, an optimized time to burst a healing process in vivo; the presence of SS differently modulated the release of the factors by interaction with the proteins composing the biomembranes. Any cytotoxicity was registered, whereas a capability to protect cells against oxidative stress and induce proliferation was observed when PL was included in the biomembrane. In a mouse skin lesion model, the biomembranes with PL promoted the healing process, inducing an accelerated and more pronounced burst of inflammation, formation of granulation tissue and new collagen deposition, leading to a more rapid skin regeneration.

Keywords: advanced wound dressing; alginate; human platelet lysate; regenerative medicine; sericin; wound healing

References

  1. Materials (Basel). 2015 Aug 11;8(8):5154-5193 - PubMed
  2. Wound Repair Regen. 2007 Jan-Feb;15(1):80-6 - PubMed
  3. Methods Mol Biol. 2017;1524:97-105 - PubMed
  4. Thromb Haemost. 2011 May;105 Suppl 1:S13-33 - PubMed
  5. Int J Nanomedicine. 2016 Sep 02;11:4373-80 - PubMed
  6. Biochim Biophys Acta. 2007 Sep;1767(9):1073-101 - PubMed
  7. Adv Skin Wound Care. 2018 Dec;31(12):565-573 - PubMed
  8. J Biomater Sci Polym Ed. 2009;20(5-6):773-83 - PubMed
  9. Cytotherapy. 2015 Dec;17(12):1793-806 - PubMed
  10. Int J Low Extrem Wounds. 2011 Jun;10(2):80-5 - PubMed
  11. J Tissue Eng Regen Med. 2018 Jan;12(1):e82-e96 - PubMed
  12. In Vivo. 2009 Nov-Dec;23(6):991-1003 - PubMed
  13. Ann Surg. 1986 Sep;204(3):322-30 - PubMed
  14. Int J Biol Macromol. 2018 Oct 15;118(Pt A):792-799 - PubMed
  15. Biol Res. 2018 Nov 29;51(1):54 - PubMed
  16. Mater Sci Eng C Mater Biol Appl. 2017 Nov 1;80:509-516 - PubMed
  17. Pharm Res. 2014 Jan;31(1):104-16 - PubMed
  18. Exp Hematol. 2004 Dec;32(12):1212-25 - PubMed
  19. Pharmaceutics. 2018 Apr 02;10(2): - PubMed
  20. Biosci Biotechnol Biochem. 2007 Oct;71(10):2473-7 - PubMed
  21. Tissue Eng Part A. 2013 Sep;19(17-18):1931-40 - PubMed
  22. Cells. 2019 Apr 09;8(4): - PubMed
  23. Prog Polym Sci. 2012 Jan;37(1):106-126 - PubMed
  24. Int J Mol Sci. 2014 Aug 06;15(8):13624-36 - PubMed
  25. BMB Rep. 2008 Mar 31;41(3):236-41 - PubMed
  26. Platelets. 2014;25(3):211-20 - PubMed
  27. J Tissue Eng Regen Med. 2019 May;13(5):892-901 - PubMed
  28. Arch Dermatol Res. 2013 Sep;305(7):585-94 - PubMed
  29. Front Med. 2018 Apr;12(2):139-152 - PubMed
  30. Wound Repair Regen. 2004 Jul-Aug;12(4):485-92 - PubMed
  31. Free Radic Biol Med. 2017 Jul;108:803-818 - PubMed
  32. Infect Drug Resist. 2019 Jan 29;12:297-309 - PubMed
  33. Stem Cells. 2005 Oct;23(9):1357-66 - PubMed
  34. Stem Cells. 2009 Sep;27(9):2331-41 - PubMed
  35. J Nutr Sci Vitaminol (Tokyo). 2007 Jun;53(3):297-300 - PubMed
  36. Int J Biol Macromol. 2013 Jul;58:47-56 - PubMed
  37. Biosci Biotechnol Biochem. 2001 Oct;65(10):2181-6 - PubMed
  38. Transfusion. 2004 Jul;44(7):1013-8 - PubMed
  39. J Pharm Sci. 2016 Mar;105(3):1188-95 - PubMed
  40. Transfusion. 2002 Jul;42(7):921-7 - PubMed
  41. Tissue Eng Part B Rev. 2017 Feb;23(1):83-99 - PubMed
  42. Biotechnol Adv. 2015 Dec;33(8):1855-67 - PubMed
  43. J Pain Res. 2019 Feb 25;12:753-767 - PubMed
  44. J Tissue Eng Regen Med. 2018 Jan;12(1):30-43 - PubMed
  45. J R Soc Interface. 2014 Nov 6;11(100):20140817 - PubMed
  46. Pharm Dev Technol. 2016;21(4):453-62 - PubMed
  47. Tissue Eng Part A. 2011 Jul;17(13-14):1787-800 - PubMed

Publication Types

Grant support