Display options
Share it on

Cell Mol Immunol. 2021 Jan;18(1):150-161. doi: 10.1038/s41423-019-0347-5. Epub 2020 Feb 17.

Conversion of effector CD4.

Cellular & molecular immunology

Elizabeth Robins, Ming Zheng, Qingshan Ni, Siqi Liu, Chen Liang, Baojun Zhang, Jian Guo, Yuan Zhuang, You-Wen He, Ping Zhu, Ying Wan, Qi-Jing Li

Affiliations

  1. Department of Immunology, Duke University Medical Center, Durham, NC, 27710, USA.
  2. Pelotonia Institute for Immuno-Oncology, Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA.
  3. Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, China.
  4. Biomedical Analysis Center, Third Military Medical University, Chongqing, China.
  5. Department of Immunology, Duke University Medical Center, Durham, NC, 27710, USA. [email protected].

PMID: 32066854 PMCID: PMC7853072 DOI: 10.1038/s41423-019-0347-5

Abstract

CD4

Keywords: CD4+ T cell; CD8+ T cell; Runx3; ThPOK; autophagy

References

  1. Singer, A., Adoro, S. & Park, J. H. Lineage fate and intense debate: myths, models and mechanisms of CD4- versus CD8-lineage choice. Nat. Rev. Immunol. 8, 788–801 (2008). - PubMed
  2. Xiong, Y. & Bosselut, R. CD4-CD8 differentiation in the thymus: connecting circuits and building memories. Curr. Opin. Immunol. 24, 139–145 (2012). - PubMed
  3. Naito, T. & Taniuchi, I. The network of transcription factors that underlie the CD4 versus CD8 lineage decision. Int. Immunol. 22, 791–796 (2010). - PubMed
  4. Liang, X. H. et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402, 672–676 (1999). - PubMed
  5. Itakura, E., Kishi, C., Inoue, K. & Mizushima, N. Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol. Biol. Cell. 19, 5360–5372 (2008). - PubMed
  6. Komatsu, M. et al. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J. Cell Biol. 169, 425–434 (2005). - PubMed
  7. Ichimura, Y. et al. A ubiquitin-like system mediates protein lipidation. Nature 408, 488–492 (2000). - PubMed
  8. Botbol, Y., Guerrero-Ros, I. & Macian, F. Key roles of autophagy in regulating T-cell function. Eur. J. Immunol. 46, 1326–1334 (2016). - PubMed
  9. McLeod, I. X., Zhou, X., Li, Q. J., Wang, F. & He, Y. W. The class III kinase Vps34 promotes T lymphocyte survival through regulating IL-7Ralpha surface expression. J. Immunol. 187, 5051–5061 (2011). - PubMed
  10. Willinger, T. & Flavell, R. A. Canonical autophagy dependent on the class III phosphoinositide-3 kinase Vps34 is required for naive T-cell homeostasis. Proc. Natl Acad. Sci. USA 109, 8670–8675 (2012). - PubMed
  11. Parekh, V. V. et al. Impaired autophagy, defective T cell homeostasis, and a wasting syndrome in mice with a T cell-specific deletion of Vps34. J. Immunol. 190, 5086–5101 (2013). - PubMed
  12. Djuretic, I. M. et al. Transcription factors T-bet and Runx3 cooperate to activate Ifng and silence Il4 in T helper type 1 cells. Nat. Immunol. 8, 145–153 (2007). - PubMed
  13. Appay, V. et al. Characterization of CD4(+) CTLs ex vivo. J. Immunol. 168, 5954–5958 (2002). - PubMed
  14. B. F Acquisition of specific cytotoxic activity by human T4+T lymphocytes in culture. Nature 308, 365–367 (1984). - PubMed
  15. Mucida, D. et al. Transcriptional reprogramming of mature CD4(+) helper T cells generates distinct MHC class II-restricted cytotoxic T lymphocytes. Nat. Immunol. 14, 281–289 (2013). - PubMed
  16. Reis, B. S., Rogoz, A., Costa-Pinto, F. A., Taniuchi, I. & Mucida, D. Mutual expression of the transcription factors Runx3 and ThPOK regulates intestinal CD4(+) T cell immunity. Nat. Immunol. 14, 271–280 (2013). - PubMed
  17. Boucheron, N. et al. CD4(+) T cell lineage integrity is controlled by the histone deacetylases HDAC1 and HDAC2. Nat. Immunol. 15, 439–448 (2014). - PubMed
  18. Lukacher, A. E., Morrison, L. A., Braciale, V. L., Malissen, B. & Braciale, T. J. Expression of specific cytolytic activity by H-2I region-restricted, influenza virus-specific T lymphocyte clones. J. Exp. Med. 162, 171–187 (1985). - PubMed
  19. Williams, N. S. & Engelhard, V. H. Identification of a population of CD4+CTL that utilizes a perforin- rather than a Fas ligand-dependent cytotoxic mechanism. J. Immunol. 156, 153–159 (1996). - PubMed
  20. Hansen, S. G. et al. Cytomegalovirus vectors violate CD8+T cell epitope recognition paradigms. Science 340, 1237874 (2013). - PubMed
  21. Hansen, S. G. et al. Broadly targeted CD8(+) T cell responses restricted by major histocompatibility complex E. Science 351, 714–720 (2016). - PubMed
  22. Suni, M. A. et al. CD4(+)CD8(dim) T lymphocytes exhibit enhanced cytokine expression, proliferation and cytotoxic activity in response to HCMV and HIV-1 antigens. Eur. J. Immunol. 31, 2512–2520 (2001). - PubMed
  23. Fu, J. et al. Impairment of CD4+cytotoxic T cells predicts poor survival and high recurrence rates in patients with hepatocellular carcinoma. Hepatology 58, 139–149 (2013). - PubMed
  24. Broux, B. et al. CX(3)CR1 drives cytotoxic CD4(+)CD28(-) T cells into the brain of multiple sclerosis patients. J. Autoimmun. 38, 10–19 (2012). - PubMed
  25. Pawlik, A. et al. The expansion of CD4+CD28- T cells in patients with rheumatoid arthritis. Arthritis Res. Ther. 5, R210–R213 (2003). - PubMed
  26. van Leeuwen, E. M. et al. Emergence of a CD4+CD28- granzyme B+, cytomegalovirus-specific T cell subset after recovery of primary cytomegalovirus infection. J. Immunol. 173, 1834–1841 (2004). - PubMed
  27. Lu, X. et al. Low double-negative CD3+CD4-CD8- T cells are associated with incomplete restoration of CD4 + T cells and higher immune activation in HIV-1 immunological non-responders. Front. Immunol. 7, 579 (2016). - PubMed
  28. Liang, Q. et al. Double Negative (DN) [CD3(+)CD4(-)CD8(-)] T cells correlate with disease progression during HIV infection. Immunol. Investig. 42, 431–437 (2013). - PubMed
  29. Ribrag, V. et al. Increase in double-positive CD4+CD8+peripheral T-cell subsets in an HIV-infected patient. AIDS 7, 1530 (1993). - PubMed
  30. Chauhan, N. K., Vajpayee, M., Mojumdar, K., Singh, R. & Singh, A. Study of CD4+CD8+double positive T-lymphocyte phenotype and function in Indian patients infected with HIV-1. J. Med. Virol. 84, 845–856 (2012). - PubMed
  31. Frahm, M. A. et al. CD4+CD8+T cells represent a significant portion of the anti-HIV T cell response to acute HIV infection. J. Immunol. 188, 4289–4296 (2012). - PubMed
  32. Howe, R. et al. Phenotypic and functional characterization of HIV-1-specific CD4+CD8+double-positive T cells in early and chronic HIV-1 infection. J. AIDS. 50, 444–456 (2009). - PubMed
  33. Kaiser, P. et al. Productive human immunodeficiency virus type 1 infection in peripheral blood predominantly takes place in CD4/CD8 double-negative T lymphocytes. J. Virol. 81, 9693–9706 (2007). - PubMed
  34. Cheney, K. M. et al. HIV type 1 persistence in CD4- /CD8- double negative T cells from patients on antiretroviral therapy. AIDS Res. Hum. Retroviruses. 22, 66–75 (2006). - PubMed
  35. Marodon, G., Warren, D., Filomio, M. C. & Posnett, D. N. Productive infection of double-negative T cells with HIV in vivo. Proc. Natl Acad. Sci. USA 96, 11958–11963 (1999). - PubMed
  36. DeMaster, L. K. et al. A subset of CD4/CD8 double-negative T cells expresses HIV proteins in patients on antiretroviral therapy. J. Virol. 90, 2165–2179 (2015). - PubMed
  37. Restrepo, C. et al. HIV Gag-specific immune response mediated by double negative (CD3(+)CD4(−)CD8(−)) T cells in HIV-exposed seronegative individuals. J. Med. Virol. 85, 200–209 (2013). - PubMed
  38. Petitjean, G. et al. Level of double negative T cells, which produce TGF-beta and IL-10, predicts CD8 T-cell activation in primary HIV-1 infection. AIDS 26, 139–148 (2012). - PubMed
  39. Margolick, J. B. et al. Development of antibodies to HIV-1 is associated with an increase in circulating CD3 + CD4-CD8- lymphocytes. Clin. Immunol. Immunopathol. 51, 348–361 (1989). - PubMed
  40. Ranasinghe, S. et al. Antiviral CD8(+) T cells restricted by human leukocyte antigen Class II exist during natural HIV infection and exhibit clonal expansion. Immunity 45, 917–930 (2016). - PubMed
  41. Weber, K. S. et al. Distinct CD4+helper T cells involved in primary and secondary responses to infection. Proc. Natl Acad. Sci. USA 109, 9511–9516 (2012). - PubMed
  42. Backer, J. M. The regulation and function of Class III PI3Ks: novel roles for Vps34. Biochem. J. 410, 1–17 (2008). - PubMed
  43. D'Acquisto, F. & Crompton, T. CD3+CD4-CD8- (double negative) T cells: saviours or villains of the immune response? Biochem. Pharmacol. 82, 333–340 (2011). - PubMed
  44. Parel, Y. & Chizzolini, C. CD4+CD8+double positive (DP) T cells in health and disease. Autoimmun. Rev. 3, 215–220 (2004). - PubMed
  45. Cheroutre, H., Husain, M. M. CD4 CTL: living up to the challenge. Semin. Immunol. 25, 273–281 (2013). - PubMed
  46. Graw, F., Weber, K. S., Allen, P. M. & Perelson, A. S. Dynamics of CD4(+) T cell responses against Listeria monocytogenes. J. Immunol. 189, 5250–5256 (2012). - PubMed
  47. Klinger, M. et al. Thymic OX40 expression discriminates cells undergoing strong responses to selection ligands. J. Immunol. 182, 4581–4589 (2009). - PubMed
  48. Cheah, M. T. et al. CD14-expressing cancer cells establish the inflammatory and proliferative tumor microenvironment in bladder cancer. Proc. Natl Acad. Sci. USA 112, 4725–4730 (2015). - PubMed
  49. Yue, Z. & Zhong, Y. From a global view to focused examination: understanding cellular function of lipid kinase VPS34-Beclin 1 complex in autophagy. J. Mol. Cell Biol. 2, 305–307 (2010). - PubMed
  50. Pua, H. H., Guo, J., Komatsu, M. & He, Y. W. Autophagy is essential for mitochondrial clearance in mature T lymphocytes. J. Immunol. 182, 4046–4055 (2009). - PubMed
  51. Yasutomo, K., Doyle, C., Miele, L., Fuchs, C. & Germain, R. N. The duration of antigen receptor signalling determines CD4+versus CD8+T-cell lineage fate. Nature 404, 506–510 (2000). - PubMed
  52. Sakaguchi, S. et al. The zinc-finger protein MAZR is part of the transcription factor network that controls the CD4 versus CD8 lineage fate of double-positive thymocytes. Nat. Immunol. 11, 442–448 (2010). - PubMed
  53. Beaumier, C. M. et al. CD4 downregulation by memory CD4+T cells in vivo renders African green monkeys resistant to progressive SIVagm infection. Nat. Med. 15, 879–885 (2009). - PubMed
  54. Douek, D. C. et al. HIV preferentially infects HIV-specific CD4+T cells. Nature 417, 95–98 (2002). - PubMed
  55. Sun, J. C. & Bevan, M. J. Defective CD8 T cell memory following acute infection without CD4 T cell help. Science 300, 339–342 (2003). - PubMed
  56. de Jong, M. A. & Geijtenbeek, T. B. Human immunodeficiency virus-1 acquisition in genital mucosa: Langerhans cells as key-players. J. Intern. Med. 265, 18–28 (2009). - PubMed
  57. Dinkins, C., Pilli, M. & Kehrl, J. H. Roles of autophagy in HIV infection. Immunol. Cell Biol. 93, 11–17 (2015). - PubMed
  58. Jia, Q. et al. Diversity index of mucosal resident T lymphocyte repertoire predicts clinical prognosis in gastric cancer. Oncoimmunology 4, e1001230 (2015). - PubMed

Publication Types

Grant support