Display options
Share it on

BMC Bioinformatics. 2020 Mar 02;21(1):93. doi: 10.1186/s12859-020-3422-0.

LK-DFBA: a linear programming-based modeling strategy for capturing dynamics and metabolite-dependent regulation in metabolism.

BMC bioinformatics

Robert A Dromms, Justin Y Lee, Mark P Styczynski

Affiliations

  1. School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
  2. School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA. [email protected].

PMID: 32122331 PMCID: PMC7053146 DOI: 10.1186/s12859-020-3422-0

Abstract

BACKGROUND: The systems-scale analysis of cellular metabolites, "metabolomics," provides data ideal for applications in metabolic engineering. However, many of the computational tools for strain design are built around Flux Balance Analysis (FBA), which makes assumptions that preclude direct integration of metabolomics data into the underlying models. Finding a way to retain the advantages of FBA's linear structure while relaxing some of its assumptions could allow us to account for metabolite levels and metabolite-dependent regulation in strain design tools built from FBA, improving the accuracy of predictions made by these tools. We designed, implemented, and characterized a modeling strategy based on Dynamic FBA (DFBA), called Linear Kinetics-Dynamic Flux Balance Analysis (LK-DFBA), to satisfy these specifications. Our strategy adds constraints describing the dynamics and regulation of metabolism that are strictly linear. We evaluated LK-DFBA against alternative modeling frameworks using simulated noisy data from a small in silico model and a larger model of central carbon metabolism in E. coli, and compared each framework's ability to recapitulate the original system.

RESULTS: In the smaller model, we found that we could use regression from a dynamic flux estimation (DFE) with an optional non-linear parameter optimization to reproduce metabolite concentration dynamic trends more effectively than an ordinary differential equation model with generalized mass action rate laws when tested under realistic data sampling frequency and noise levels. We observed detrimental effects across all tested modeling approaches when metabolite time course data were missing, but found these effects to be smaller for LK-DFBA in most cases. With the E. coli model, we produced qualitatively reasonable results with similar properties to the smaller model and explored two different parameterization structures that yield trade-offs in computation time and accuracy.

CONCLUSIONS: LK-DFBA allows for calculation of metabolite concentrations and considers metabolite-dependent regulation while still retaining many computational advantages of FBA. This provides the proof-of-principle for a new metabolic modeling framework with the potential to create genome-scale dynamic models and the potential to be applied in strain engineering tools that currently use FBA.

Keywords: Flux balance analysis; Metabolic modeling; Metabolite dynamics; Metabolomics

References

  1. Nat Commun. 2010;1:145 - PubMed
  2. PLoS Comput Biol. 2012 Feb;8(2):e1002363 - PubMed
  3. PLoS Comput Biol. 2010 Apr 15;6(4):e1000744 - PubMed
  4. Nat Commun. 2016 Dec 20;7:13806 - PubMed
  5. Theor Biol Med Model. 2007 May 20;4:19 - PubMed
  6. Nat Methods. 2015 Nov;12(11):1091-7 - PubMed
  7. J Bacteriol. 2004 Mar;186(6):1769-84 - PubMed
  8. PLoS Comput Biol. 2014 Feb 20;10(2):e1003487 - PubMed
  9. Biotechnol Bioeng. 2002 Jul 5;79(1):53-73 - PubMed
  10. J Comput Biol. 2012 Feb;19(2):232-40 - PubMed
  11. BMC Syst Biol. 2012 Jul 09;6:84 - PubMed
  12. Mol Syst Biol. 2013;9:651 - PubMed
  13. Cell. 2012 Jul 20;150(2):389-401 - PubMed
  14. Nat Commun. 2016 Feb 05;7:10390 - PubMed
  15. Genome Biol. 2019 Jun 13;20(1):121 - PubMed
  16. Bioinformatics. 2018 Nov 15;34(22):3882-3888 - PubMed
  17. J Theor Biol. 2001 Nov 7;213(1):73-88 - PubMed
  18. BMC Bioinformatics. 2013 Jan 30;14:32 - PubMed
  19. Front Microbiol. 2018 Jul 31;9:1690 - PubMed
  20. Bioinformatics. 2006 Dec 15;22(24):3067-74 - PubMed
  21. Mol Biosyst. 2015 Sep;11(9):2394-405 - PubMed
  22. PLoS Comput Biol. 2018 Feb 23;14(2):e1005982 - PubMed
  23. Front Physiol. 2012 Aug 06;3:299 - PubMed
  24. Bioinformatics. 2004 Jul 22;20(11):1670-81 - PubMed
  25. Nucleic Acids Res. 2006 Jan 1;34(Database issue):D689-91 - PubMed
  26. Biophys J. 2002 Sep;83(3):1331-40 - PubMed
  27. Bioinformatics. 2008 Sep 15;24(18):2044-50 - PubMed
  28. Biophys J. 2013 Jul 16;105(2):512-22 - PubMed
  29. Mol Syst Biol. 2013 Nov 26;9:709 - PubMed
  30. PLoS Comput Biol. 2009 Mar;5(3):e1000308 - PubMed
  31. Front Physiol. 2016 Jan 07;6:413 - PubMed
  32. ACS Synth Biol. 2014 Apr 18;3(4):247-57 - PubMed
  33. Metabolites. 2015 Oct 28;5(4):659-76 - PubMed
  34. PLoS One. 2015 Jun 11;10(6):e0130033 - PubMed
  35. PLoS Comput Biol. 2014 Apr 24;10(4):e1003580 - PubMed
  36. Microb Cell Fact. 2012 Jun 13;11:79 - PubMed
  37. Metab Eng. 1999 Jan;1(1):1-11 - PubMed
  38. J Theor Biol. 1993 Dec 21;165(4):477-502 - PubMed
  39. Biotechnol Bioeng. 2003 Dec 20;84(6):647-57 - PubMed
  40. Bioinformatics. 2008 Nov 1;24(21):2505-11 - PubMed
  41. BMC Syst Biol. 2013 Aug 08;7:74 - PubMed
  42. Appl Environ Microbiol. 2006 May;72(5):3566-77 - PubMed

MeSH terms

Publication Types

Grant support