Display options
Share it on

iScience. 2020 Mar 27;23(3):100941. doi: 10.1016/j.isci.2020.100941. Epub 2020 Feb 27.

Loss of H3K36 Methyltransferase SETD2 Impairs V(D)J Recombination during Lymphoid Development.

iScience

S Haihua Chu, Jonathan R Chabon, Chloe N Matovina, Janna C Minehart, Bo-Ruei Chen, Jian Zhang, Vipul Kumar, Yijun Xiong, Elsa Callen, Putzer J Hung, Zhaohui Feng, Richard P Koche, X Shirley Liu, Jayanta Chaudhuri, Andre Nussenzweig, Barry P Sleckman, Scott A Armstrong

Affiliations

  1. Department of Pediatric Oncology, Dana Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children's Hospital, 450 Brookline Avenue, Boston, MA 02215-5450, USA.
  2. New York University School of Medicine, New York, NY, USA.
  3. Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA.
  4. Center for Computational Biology, Beijing Institute of Basic Medical Sciences, Beijing, China; Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, MA, USA.
  5. Howard Hughes Medical Institute, Department of Pediatrics, Department of Genetics, Harvard Medical School, Boston, MA, USA; Harvard-MIT MD-PhD Program, Harvard Medical School, Boston, MA, USA.
  6. Laboratory of Genome Integrity, National Cancer Institute National Institutes of Health, Bethesda, MD, USA.
  7. Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
  8. Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
  9. Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, MA, USA.
  10. Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
  11. Department of Pediatric Oncology, Dana Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children's Hospital, 450 Brookline Avenue, Boston, MA 02215-5450, USA. Electronic address: [email protected].

PMID: 32169821 PMCID: PMC7066224 DOI: 10.1016/j.isci.2020.100941

Abstract

Repair of DNA double-stranded breaks (DSBs) during lymphocyte development is essential for V(D)J recombination and forms the basis of immunoglobulin variable region diversity. Understanding of this process in lymphogenesis has historically been centered on the study of RAG1/2 recombinases and a set of classical non-homologous end-joining factors. Much less has been reported regarding the role of chromatin modifications on this process. Here, we show a role for the non-redundant histone H3 lysine methyltransferase, Setd2, and its modification of lysine-36 trimethylation (H3K36me3), in the processing and joining of DNA ends during V(D)J recombination. Loss leads to mis-repair of Rag-induced DNA DSBs, especially when combined with loss of Atm kinase activity. Furthermore, loss reduces immune repertoire and a severe block in lymphogenesis as well as causes post-mitotic neuronal apoptosis. Together, these studies are suggestive of an important role of Setd2/H3K36me3 in these two mammalian developmental processes that are influenced by double-stranded break repair.

Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved.

Keywords: Biological Sciences; Cell Biology; Immunology; Molecular Biology

Conflict of interest statement

Declaration of Interests S.A.A. has been a consultant and/or shareholder for Epizyme Inc, Imago Biosciences, Cyteir Therapeutics, C4 Therapeutics, Syros Pharmaceuticals, OxStem Oncology, Accent Therap

References

  1. Proc Natl Acad Sci U S A. 2016 Sep 20;113(38):10619-24 - PubMed
  2. Nat Genet. 2019 Mar;51(3):560-567 - PubMed
  3. J Med Genet. 2016 Nov;53(11):743-751 - PubMed
  4. Nature. 2000 Mar 30;404(6777):510-4 - PubMed
  5. Cell Res. 2018 Apr;28(4):476-490 - PubMed
  6. Nature. 2006 Jul 27;442(7101):466-70 - PubMed
  7. EMBO J. 1998 Sep 15;17(18):5497-508 - PubMed
  8. Mol Cell. 2018 Jul 19;71(2):332-342.e8 - PubMed
  9. Cell Rep. 2014 Jun 26;7(6):2006-18 - PubMed
  10. Essays Biochem. 2010 Sep 20;48(1):221-43 - PubMed
  11. Nature. 2007 Sep 27;449(7161):483-6 - PubMed
  12. Mol Cell. 2008 Sep 5;31(5):631-40 - PubMed
  13. Mol Cell. 2016 Sep 1;63(5):898-911 - PubMed
  14. Cell. 2003 Aug 8;114(3):371-383 - PubMed
  15. Cell Death Dis. 2015 Apr 09;6:e1716 - PubMed
  16. Cell. 1998 Dec 23;95(7):891-902 - PubMed
  17. Nat Biotechnol. 2017 Oct 11;35(10):908-911 - PubMed
  18. Nat Commun. 2016 Feb 02;7:10529 - PubMed
  19. EMBO J. 2001 Nov 15;20(22):6394-403 - PubMed
  20. Cell. 2010 Apr 30;141(3):419-31 - PubMed
  21. Proc Natl Acad Sci U S A. 2017 Feb 21;114(8):1904-1909 - PubMed
  22. Nat Genet. 2014 Mar;46(3):287-93 - PubMed
  23. Nat Genet. 2017 Mar 30;49(4):482-483 - PubMed
  24. Annu Rev Genet. 2011;45:167-202 - PubMed
  25. Proc Natl Acad Sci U S A. 2000 Mar 14;97(6):2668-73 - PubMed
  26. PLoS One. 2015 Apr 17;10(4):e0124661 - PubMed
  27. Nat Commun. 2019 Jul 26;10(1):3353 - PubMed
  28. Genes Dev. 1995 Oct 1;9(19):2409-20 - PubMed
  29. Proc Natl Acad Sci U S A. 2006 May 9;103(19):7378-83 - PubMed
  30. Nat Struct Mol Biol. 2012 Dec;19(12):1266-72 - PubMed
  31. Proc Natl Acad Sci U S A. 2011 Jan 11;108(2):540-5 - PubMed
  32. Cell. 2004 Jun 11;117(6):787-800 - PubMed
  33. Cell. 1992 Sep 18;70(6):983-91 - PubMed
  34. J Exp Med. 2017 May 1;214(5):1371-1386 - PubMed
  35. Blood. 2017 Dec 14;130(24):2631-2641 - PubMed
  36. Cell. 2013 Apr 25;153(3):590-600 - PubMed
  37. Nature. 2007 Dec 13;450(7172):1106-10 - PubMed
  38. Nature. 2000 Apr 20;404(6780):897-900 - PubMed
  39. Curr Top Microbiol Immunol. 2012;356:65-89 - PubMed
  40. DNA Repair (Amst). 2008 Jul 1;7(7):1051-60 - PubMed
  41. J Immunol. 2006 Jun 1;176(11):6831-8 - PubMed
  42. Proc Natl Acad Sci U S A. 2009 Feb 10;106(6):1880-5 - PubMed
  43. Science. 2016 May 13;352(6287):844-9 - PubMed
  44. Biol Open. 2012 Dec 15;1(12):1200-3 - PubMed
  45. Nucleic Acids Res. 1997 Mar 15;25(6):1317-8 - PubMed
  46. Cell. 2013 Jan 31;152(3):417-29 - PubMed
  47. Nat Biotechnol. 2018 Nov 9;36(11):1034 - PubMed
  48. Immunity. 2006 Jul;25(1):31-41 - PubMed
  49. Cancer Discov. 2017 Apr;7(4):369-379 - PubMed
  50. J Immunol. 2016 Oct 15;197(8):3165-3174 - PubMed
  51. Nature. 2011 Jan 13;469(7329):250-4 - PubMed
  52. Leukemia. 2016 Nov;30(11):2179-2186 - PubMed
  53. Nat Neurosci. 2016 Sep;19(9):1194-6 - PubMed
  54. Nat Struct Mol Biol. 2014 Apr;21(4):366-74 - PubMed
  55. Blood. 2016 Aug 4;128(5):650-9 - PubMed
  56. Nat Rev Mol Cell Biol. 2012 Jan 23;13(2):115-26 - PubMed
  57. Haematologica. 2018 Jul;103(7):1110-1123 - PubMed
  58. Neuron. 2015 Dec 2;88(5):910-917 - PubMed
  59. Int J Hematol. 2014 Sep;100(3):230-7 - PubMed
  60. J Exp Med. 2009 Nov 23;206(12):2625-39 - PubMed
  61. J Exp Med. 2009 May 11;206(5):1019-27 - PubMed
  62. Nucleic Acids Res. 2008 May;36(9):2939-47 - PubMed
  63. Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):2956-61 - PubMed
  64. Genes Dev. 1993 Dec;7(12B):2520-32 - PubMed
  65. Proc Natl Acad Sci U S A. 2006 Sep 12;103(37):13789-94 - PubMed
  66. Acta Neuropathol. 2013 May;125(5):659-69 - PubMed
  67. Mol Cell. 2000 Jun;5(6):993-1002 - PubMed
  68. Cell. 2002 Apr;109 Suppl:S45-55 - PubMed
  69. DNA Repair (Amst). 2014 Apr;16:11-22 - PubMed
  70. Cell Death Differ. 2018 Feb;25(2):444-452 - PubMed
  71. Nature. 2012 Jan 11;481(7380):157-63 - PubMed

Publication Types

Grant support