Display options
Share it on

Sci Rep. 2020 Apr 06;10(1):5949. doi: 10.1038/s41598-020-62411-2.

Microbial Diversity and Metabolic Potential in the Stratified Sansha Yongle Blue Hole in the South China Sea.

Scientific reports

Peiqing He, Linping Xie, Xuelei Zhang, Jiang Li, Xuezheng Lin, Xinming Pu, Chao Yuan, Ziwen Tian, Jie Li

Affiliations

  1. Key Laboratory of Science and Technology for Marine Ecology and Environment, First Institute of Oceanography, Ministry of Natural Resources, 6 Xianxialing Road, Qingdao, 266061, China. [email protected].
  2. Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China. [email protected].
  3. Key Laboratory of Natural Products of Qingdao, Qingdao, 266061, China. [email protected].
  4. Key Laboratory of Science and Technology for Marine Ecology and Environment, First Institute of Oceanography, Ministry of Natural Resources, 6 Xianxialing Road, Qingdao, 266061, China.
  5. Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
  6. Key Laboratory of Natural Products of Qingdao, Qingdao, 266061, China.
  7. Research Center for Islands and Coastal Zone, First Institute of Oceanography, Ministry of Natural Resources, 6 Xianxialing Road, Qingdao, 266061, China.
  8. Marine Engineering Environment and Geomatic Center, First Institute of Oceanography, Ministry of Natural Resources, 6 Xianxialing Road, Qingdao, 266061, China.

PMID: 32249806 PMCID: PMC7136235 DOI: 10.1038/s41598-020-62411-2

Abstract

The Sansha Yongle Blue Hole is the world's deepest (301 m) underwater cave and has a sharp redox gradient, with oligotrophic, anoxic, and sulfidic bottom seawater. In order to discover the microbial communities and their special biogeochemical pathways in the blue hole, we analyzed the 16S ribosomal RNA amplicons and metagenomes of microbials from seawater depths with prominent physical, chemical, and biological features. Redundancy analysis showed that dissolved oxygen was the most important factor affecting the microbial assemblages of the blue hole and surrounding open sea waters, and significantly explained 44.7% of the total variation, followed by silicate, temperature, sulfide, ammonium, methane, nitrous oxide, nitrate, dissolved organic carbon, salinity, particulate organic carbon, and chlorophyll a. We identified a bloom of Alteromonas (34.9%) at the primary nitrite maximum occurring in close proximity to the chlorophyll a peak in the blue hole. Genomic potential for nitrate reduction of Alteromonas might contribute to this maximum under oxygen decrease. Genes that would allow for aerobic ammonium oxidation, complete denitrification, and sulfur-oxidization were enriched at nitrate/nitrite-sulfide transition zone (90 and 100 m) of the blue hole, but not anammox pathways. Moreover, γ-Proteobacterial clade SUP05, ε-Proteobacterial genera Sulfurimonas and Arcobacter, and Chlorobi harbored genes for sulfur-driven denitrification process that mediated nitrogen loss and sulfide removal. In the anoxic bottom seawater (100-300 m), high levels of sulfate reducers and dissimilatory sulfite reductase gene (dsrA) potentially created a sulfidic zone of ~200 m thickness. Our findings suggest that in the oligotrophic Sansha Yongle Blue Hole, O

References

  1. Falkowski, P. G. et al. Ocean deoxygenation: past, present and future. Eos Transactions American Geophysical Union 92, 409–420, https://doi.org/10.1029/2011EO460001 (2011). - PubMed
  2. Wyrtki, K. Circulation and water masses in the eastern equatorial Pacific Ocean. Chinese Journal of Oceanology and Limnology 1, 117–147 (1967). - PubMed
  3. Thamdrup, B., Dalsgaard, T. & Revsbech, N. P. Wide spread functional anoxia in the oxygen minimum zone of the eastern South Pacific. Deep Sea Research Part I: Oceanographic Research Papers 65, 36–45, https://doi.org/10.1016/j.dsr.2012.03.001 (2012). - PubMed
  4. Canfield, D. E. et al. A cryptic sulfur cycle in oxygen-minimum-zone waters off the Chilean Coast. Science 330, 1375–1378, https://doi.org/10.1126/science.1196889  (2010). - PubMed
  5. Jensen, M. M. et al. Intensive nitrogen loss over the Omani Shelf due to anammox coupled with dissimilatory nitrite reduction to ammonium. The ISME Journal 5, 1660–1670, https://doi.org/10.1038/ismej.2011.44 (2011). - PubMed
  6. Schunck, H. et al. Giant hydrogen sulfide plume in the oxygen minimum zone off Peru supports chemolithoautotrophy. PLoS One 8, e68661, https://doi.org/10.1371/journal.pone.0068661 (2013). - PubMed
  7. Lavik, G. et al. Detoxification of sulphidic African shelf waters by blooming chemolithotrophs. Nature 457, 581–584, https://doi.org/10.1038/nature07588 (2009). - PubMed
  8. Naqvi, S. W. A. et al. Increased marine production of N - PubMed
  9. Jørgensen, B. B., Fossing, H., Wirsen, C. O. & Jannasch, H. W. Sulfide oxidation in the anoxic Black Sea chemocline. Deep Sea Research Part A. Oceanographic Research Papers 38, S1083–S1103, https://doi.org/10.1016/S0198-0149(10)80025-1 (1991). - PubMed
  10. Luther, G. W., Church, T. M. & Powell, D. Sulfur speciation and sulfide oxidation in the water column of the Black Sea. Deep Sea Research Part A. Oceanographic Research Papers 38, S1121–S1137, https://doi.org/10.1016/S0198-0149(10)80027-5 (1991). - PubMed
  11. Sorokin, Y. I., Sorokin, P. Y., Avdeev, V. A., Sorokin, D. Y. & Ilchenko, S. V. Biomass, production and activity of bacteria in the Black-Sea, with special reference to chemosynthesis and the sulfur cycle. Hydrobiologia 308, 61–76, https://doi.org/10.1007/bf00037788 (1995). - PubMed
  12. Glaubitz, S., Labrenz, M., Jost, G. & Jürgens, K. Diversity of active chemolithoautotrophic prokaryotes in the sulfidic zone of a Black Sea pelagic redoxcline as determined by rRNA-based stable isotope probing. FEMS Microbiology Ecology 74, 32–41, https://doi.org/10.1111/j.1574-6941.2010.00944.x (2010). - PubMed
  13. Glaubitz, S. et al. - PubMed
  14. Brettar, I. & Rheinheimer, G. Denitrification in the Central Baltic: evidence for H - PubMed
  15. Brettar, I. et al. Identification of a Thiomicrospira denitrificans-like Epsilonproteobacterium as a catalyst for autotrophic denitrification in the central Baltic Sea. Applied and Environmental Microbiology 72, 1364–1372, https://doi.org/10.1128/AEM.72.2.1364-1372.2006 (2006). - PubMed
  16. Zhang, J. Z. & Millero, F. J. The chemistry of the anoxic waters in the Cariaco Trench. Deep Sea Research Part I: Oceanographic Research Papers 40, 1023–1041, https://doi.org/10.1016/0967-0637(93)90088-K (1993). - PubMed
  17. Hayes, M. K., Taylor, G. T., Astor, Y. & Scranton, M. I. Vertical distributions of thiosulfate and sulfite in the Cariaco Basin. Limnology and Oceanography 51, 280–287, https://doi.org/10.4319/lo.2006.51.1.0280 (2006). - PubMed
  18. Gonzalez, B. C., Iliffe, T. M., Macalady, J. L., Schaperdoth, I. & Kakuk, B. Microbial hotspots in anchialine blue holes: initial discoveries from the Bahamas. Hydrobiologia 677, 149–156, https://doi.org/10.1007/s10750-011-0932-9 (2011). - PubMed
  19. Gischler, E., Anselmetti, F. S. & Shinn, E. A. Seismic stratigraphy of the Blue Hole (Lighthouse Reef, Belize), a late Holocene climate and storm archive. Marine Geology 344, 155–162, https://doi.org/10.1016/j.margeo.2013.07.013 (2013). - PubMed
  20. Xie, L. et al. Hydrochemical properties and chemocline of the Sansha Yongle Blue Hole in the South China Sea. Science of the Total Environment 649, 1281–1292, https://doi.org/10.1016/j.scitotenv.2018.08.333 (2019). - PubMed
  21. Orcutt, B. N., Sylvan, J. B., Knab, N. J. & Edwards, K. J. Microbial ecology of the dark ocean above, at, and below the seafloor. Microbiology and Molecular Biology Reviews 75, 361–422, https://doi.org/10.1128/MMBR.00039-10 (2011). - PubMed
  22. Kalvelage, T. et al. Oxygen sensitivity of anammox and coupled N-cycle processes in oxygen minimum zones. PLoS One 6, e29299, https://doi.org/10.1371/journal.pone.0029299 (2011). - PubMed
  23. Codispoti, L. et al. The oceanic fixed nitrogen and nitrous oxide budgets: moving targets as we enter the anthropocene? Scientia Marina 65, 85–105 (2001). - PubMed
  24. Lam, P. & Kuypers, M. M. M. Microbial nitrogen cycling processes in oxygen minimum zones. Annual Review of Marine Science 3, 317–345, https://doi.org/10.1146/annurev-marine-120709-142814 (2011). - PubMed
  25. Ward, B. B. et al. Denitrification as the dominant nitrogen loss process in the Arabian Sea. Nature 461, 78–81, https://doi.org/10.1038/nature08276 (2009). - PubMed
  26. Bulow, S. E., Rich, J. J., Naik, H. S., Pratihary, A. K. & Ward, B. B. Denitrification exceeds anammox as a nitrogen loss pathway in the Arabian Sea oxygen minimum zone. Deep Sea Research Part I: Oceanographic Research Papers 57, 384–393, https://doi.org/10.1016/j.dsr.2009.10.014 (2010). - PubMed
  27. Kuypers, M. M. M. et al. Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation. Proceedings of the National Academy of Sciences of the United States of America 102, 6478–6483, https://doi.org/10.1073/pnas.0502088102 (2005). - PubMed
  28. Hamersley, M. R. et al. Anaerobic ammonium oxidation in the Peruvian oxygen minimum zone. Limnology and Oceanography 52, 923–933 (2007). - PubMed
  29. Lam, P. et al. Revising the nitrogen cycle in the Peruvian oxygen minimum zone. Proceedings of the National Academy of Sciences of the United States of America 106, 4752–4757, https://doi.org/10.1073/pnas.0812444106 (2009). - PubMed
  30. Kalvelage, T. et al. Nitrogen cycling driven by organic matter export in the South Pacific oxygen minimum zone. Nature Geoscience 6, 228–234, https://doi.org/10.1038/ngeo1739 (2013). - PubMed
  31. Thamdrup, B. et al. Anaerobic ammonium oxidation in the oxygen-deficient waters off northern Chile. Limnology and Oceanography 51, 2145–2156 (2006). - PubMed
  32. Hannig, M. et al. Shift from denitrification to anammox after inflow events in the central Baltic Sea. Limnology and Oceanography 52, 1336–1345 (2007). - PubMed
  33. Dalsgaard, T., Thamdrup, B., Farías, L. & Revsbech, N. P. Anammox and denitrification in the oxygen minimum zone of the eastern South Pacific. Limnology and Oceanography 57, 1331–1346, https://doi.org/10.4319/lo.2012.57.5.1331 (2012). - PubMed
  34. De Brabandere, L. et al. Vertical partitioning of nitrogen-loss processes across the oxic–anoxic interface of an oceanic oxygen minimum zone. Environmental Microbiology 16, 3041–3054, https://doi.org/10.1111/1462-2920.12255 (2014). - PubMed
  35. Fuchs, B. M., Woebken, D., Zubkov, M. V., Burkill, P. & Amann, R. Molecular identification of picoplankton populations in contrasting waters of the Arabian Sea. Aquatic Microbial Ecology 39, 145–157 (2005). - PubMed
  36. Stevens, H. & Ulloa, O. Bacterial diversity in the oxygen minimum zone of the eastern tropical South Pacific. Environmental Microbiology 10, 1244–1259, https://doi.org/10.1111/j.1462-2920.2007.01539.x (2008). - PubMed
  37. Stewart, F. J., Ulloa, O. & DeLong, E. F. Microbial metatranscriptomics in a permanent marine oxygen minimum zone. Environmental Microbiology 14, 23–40, https://doi.org/10.1111/j.1462-2920.2010.02400.x (2012). - PubMed
  38. Carolan, M. & Beman, J. M. Transcriptomic evidence for microbial sulfur cycling in the eastern tropical North Pacific oxygen minimum zone. Frontiers in Microbiology 6, 334, https://doi.org/10.3389/fmicb.2015.00334 (2015). - PubMed
  39. Bristow, L. A. et al. N - PubMed
  40. Lin, X. J., Scranton, M. I., Chistoserdov, A. Y., Varela, R. & Taylor, G. T. Spatiotemporal dynamics of bacterial populations in the anoxic Cariaco Basin. Limnology and Oceanography 53, 37–51, https://doi.org/10.4319/lo.2008.53.1.0037 (2008). - PubMed
  41. Grote, J., Jost, G., Labrenz, M., Herndl, G. J. & Jürgens, K. Epsilonproteobacteria represent the major portion of chemoautotrophic bacteria in sulfidic waters of pelagic redoxclines of the Baltic and Black Seas. Applied and Environmental Microbiology 74, 7456–7551, https://doi.org/10.1128/AEM.01186-08 (2008). - PubMed
  42. Li, T. G. et al. Three-dimensional (3D) morphology of Sansha Yongle Blue Hole in the South China Sea revealed by underwater remotely operated vehicle. Scientific Reports 8, 17122, https://doi.org/10.1038/s41598-018-35220-x (2018). - PubMed
  43. Füssel, J. et al. Nitrite oxidation in the Namibian oxygen minimum zone. The ISME Journal 6, 1200–1209, https://doi.org/10.1038/ismej.2011.178 (2012). - PubMed
  44. Garcia-Robledo, E. et al. Cryptic oxygen cycling in anoxic marine zones. Proceedings of the National Academy of Sciences of the United States of America 114, 8319–8324, https://doi.org/10.1073/pnas.1619844114 (2017). - PubMed
  45. Le Moigne, F. A. C., Cisternas-Novoa, C., Piontek, J., Maßmig, M. & Engel, A. On the effect of low oxygen concentrations on bacterial degradation of sinking particles. Scientific Reports 7, 16722, https://doi.org/10.1038/s41598-017-16903-3 (2017). - PubMed
  46. Wright, J. J., Konwar, K. M. & Hallam, S. J. Microbial ecology of expanding oxygen minimum zones. Nature Reviews Microbiology 10, 381–394, https://doi.org/10.1038/nrmicro2778 (2012). - PubMed
  47. Thureborn, P. et al. A metagenomics transect into the deepest point of the Baltic Sea reveals clear stratification of microbial functional capacities. PLoS One. 8, e74983, https://doi.org/10.1371/journal.pone.0074983 (2013). - PubMed
  48. Ulloa, O., Canfield, D. E., Delong, E. F., Letelier, R. M. & Stewart, F. J. Microbial oceanography of anoxic oxygen minimum zones. Proceedings of the National Academy of Sciences of the United States of America 109, 15996–16003, https://doi.org/10.1073/pnas.1205009109 (2012). - PubMed
  49. Dang, H. & Lovell, C. R. Microbial surface colonization and biofilm development in marine environments. Microbiology & Molecular Biology Reviews 80, 91–138, https://doi.org/10.1128/MMBR.00037-15 (2016). - PubMed
  50. Pinhassi, J. et al. Changes in bacterioplankton composition under different phytoplankton regimens. Applied and Environmental Microbiology 70, 6753–6766, https://doi.org/10.1128/AEM.70.11.6753-6766.2004  (2004). - PubMed
  51. Cottrell, M. T. & Kirchman, D. L. Natural assemblages of marine proteobacteria and members of the Cytophaga-Flavobacter cluster consuming low- and high-molecular-weight dissolved organic matter. Applied and Environmental Microbiology 66, 1692–1697, https://doi.org/10.1128/aem.66.4.1692-1697.2000 (2000). - PubMed
  52. Alonso-Sáez, L. & Gasol, J. M. Seasonal variations in the contributions of different bacterial groups to the uptake of low-molecular-weight compounds in northwestern Mediterranean coastal waters. Applied and Environmental Microbiology 73, 3528–3535, https://doi.org/10.1128/AEM.02627-06 (2007). - PubMed
  53. DeLong, E. F., Franks, D. G. & Alldredge, A. L. Phylogenetic diversity of aggregate-attached vs. free-living marine bacterial assemblages. Limnology and Oceanography 38, 924–934, https://doi.org/10.4319/lo.1993.38.5.0924 (1993). - PubMed
  54. Teeling, H. et al. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science 336, 608–611, https://doi.org/10.1126/science.1218344 (2012). - PubMed
  55. Garcia-Martinez, J., Acinas, S. G., Massana, R. & Rodriguez-Valera, F. Prevalence and microdiversity of Alteromonas macleodii-like microorganisms in different oceanic regions. Environmental Microbiology 4, 42–50, https://doi.org/10.1046/j.1462-2920.2002.00255.x (2002). - PubMed
  56. López-Pérez, M. et al. Genomes of surface isolates of Alteromonas macleodii: the life of a widespread marine opportunistic copiotroph. Scientific Reports 2, 696, https://doi.org/10.1038/srep00696 (2012). - PubMed
  57. Ganesh, S. et al. Size-fraction partitioning of community gene transcription and nitrogen metabolism in a marine oxygen minimum zone. The ISME Journal 9, 2682–2696, https://doi.org/10.1038/ismej.2015.44 (2015). - PubMed
  58. Diner, R. E., Schwenck, S. M., Mc Crow, J. P., Zheng, H. & Allen, A. E. Genetic manipulation of competition for nitrate between heterotrophic bacteria and diatoms. Frontiers in Microbiology 7, 880, https://doi.org/10.3389/fmicb.2016.00880 (2016). - PubMed
  59. Wright, J. J. et al. Genomic properties of Marine Group A bacteria indicate a role in the marine sulfur cycle. The ISME Journal 8, 455–468, https://doi.org/10.1038/ismej.2013.152 (2014). - PubMed
  60. Arntzen, M. Ø., Várnai, A., Mackie, R. I., Eijsink, V. G. H. & Pope, P. B. Outer membrane vesicles from Fibrobacter succinogenes S85 contain an array of carbohydrate-active enzymes with versatile polysaccharide-degrading capacity. Environmental Microbiology 19, 2701–2714, https://doi.org/10.1111/1462-2920.13770 (2017). - PubMed
  61. Youssef, N. H. et al. In Silico analysis of the metabolic potential and niche specialization of candidate phylum “Latescibacteria” (WS3). PLoS One 10, e0127499, https://doi.org/10.1371/journal.pone.0127499 (2015). - PubMed
  62. Nobu, M. K. et al. Microbial dark matter ecogenomics reveals complex synergistic networks in a methanogenic bioreactor. The ISME Journal 9, 1710–1722, https://doi.org/10.1038/ismej.2014.256 (2015). - PubMed
  63. Kuypers, M. M., Marchant, H. K. & Kartal, B. The microbial nitrogen-cycling network. Nature Reviews Microbiology 16, 263–276, https://doi.org/10.1038/nrmicro.2018.9 (2018). - PubMed
  64. Fuchsman, C. A., Devol, A. H., Saunders, J. K., McKay, C. & Rocap, G. Niche partitioning of the N cycling microbial community of an offshore oxygen deficient zone. Frontiers in Microbiology 8, 2384, https://doi.org/10.3389/fmicb.2017.02384 (2017). - PubMed
  65. Codispoti, L. A. Interesting times for marine N - PubMed
  66. Levipan, H. A., Molina, V. & Fernandez, C. Nitrospina-like bacteria are the main drivers of nitrite oxidation in the seasonal upwelling area of the Eastern South Pacific (central Chile ~36°S). Environmental Microbiology Reports 6, 565–573, https://doi.org/10.1111/1758-2229.12158 (2014). - PubMed
  67. Mincer, T. J. et al. Quantitative distribution of presumptive archaeal and bacterial nitrifiers in Monterey Bay and the North Pacific Subtropical Gyre. Environmental Microbiology 9, 1162–1175, https://doi.org/10.1111/j.1462-2920.2007.01239.x (2007). - PubMed
  68. van de Vossenberg, J. et al. The metagenome of the marine anammox bacterium “Candidatus Scalindua profunda” illustrates the versatility of this globally important nitrogen cycle bacterium. Environmental Microbiology 15, 1275–1289, https://doi.org/10.1111/j.1462-2920.2012.02774.x (2013). - PubMed
  69. Jensen, M. M., Kuypers, M. M. M., Lavik, G. & Thamdrup, B. Rates and regulation of anaerobic ammonium oxidation and denitrification in the Black Sea. Limnology and Oceanography 53, 23–36, https://doi.org/10.4319/lo.2008.53.1.0023 (2008). - PubMed
  70. Stief, P., Kamp, A., Thamdrup, B. & Glud, R. N. Anaerobic nitrogen turnover by sinking diatom aggregates at varying ambient oxygen levels. Frontiers in Microbiology 7, 98, https://doi.org/10.3389/fmicb.2016.00098 (2016). - PubMed
  71. Oh, J. & Silverstein, J. Acetate limitation and nitrite accumulation during denitrification. Journal of Environmental Engineering 125, 234–242, https://doi.org/10.1061/(ASCE)0733-9372(1999)125:3(234) (1999). - PubMed
  72. Körner, H. & Zumft, W. G. Expression of denitrification enzymes in response to the dissolved oxygen levels and respiratory substrate in continuous cultures of Pseudomonas stutzeri. Applied and Environmental Microbiology 55, 1670–1676 (1989). - PubMed
  73. Brandhorst, W. Nitrification and denitrification in the eastern tropical North Pacific. ICES Journal of Marine Science 25, 3–20, https://doi.org/10.1093/icesjms/25.1.3 (1959). - PubMed
  74. Cameron, M. et al. Oxygen minimum zone cryptic sulfur cycling sustained by offshore transport of key sulfur oxidizing bacteria. Nature Communications 9, 1729, https://doi.org/10.1038/s41467-018-04041-x (2018). - PubMed
  75. Jost, G. et al. Anaerobic sulfur oxidation in the absence of nitrate dominates microbial chemoautotrophy beneath the pelagic chemocline of the eastern Gotland Basin, Baltic Sea. FEMS Microbiology Ecology 71, 226–236, https://doi.org/10.1111/j.1574-6941.2009.00798.x (2010). - PubMed
  76. Inagaki, F., Takai, K., Kobayashi, H., Nealson, K. H. & Horikoshi, K. Sulfurimonas autrotrophica gen. nov., sp. nov., a novel sulfur-oxidizing ε-proteobacterium isolated from hydrothermal sediments in the Mid-Okinawa Trough. International Journal Evolutionary Microbiology 53, 1801–1805, https://doi.org/10.1099/ijs.0.02682-0 (2003). - PubMed
  77. Wasmund, K., Mußmann, M. & Loy, A. The life sulfuric: microbial ecology of sulfur cycling in marine sediments. Environmental Microbiology Reports 9, 323–344, https://doi.org/10.1111/1758-2229.12538 (2017). - PubMed
  78. Findlay, A. J., Bennett, A. J., Hanson, T. E. & Luther, G. W. Light-dependent sulfide oxidation in the anoxic zone of the Chesapeake Bay can be explained by small populations of phototrophic bacteria. Applied and Enviromental Microbiology 81, 7560–7569, https://doi.org/10.1128/AEM.02062-15 (2015). - PubMed
  79. Gugliandolo, C., Irrera, G. P., Lentini, V. & Maugeri, T. L. Pathogenic Vibrio, Aeromonas and Arcobacter spp. associated with copepods in the Straits of Messina (Italy). Marine Pollution Bulletin 56, 600–606, https://doi.org/10.1016/j.marpolbul.2007.12.001 (2008). - PubMed
  80. Whitman, W. B., Ankwanda, E. & Wolfe, R. S. Nutrition and carbon metabolism of Methanococcus voltae. Journal of Bacteriology 149, 852–863 (1982). - PubMed
  81. Garcia, J. L. Taxonomy and ecology of methanogens. FEMS Microbiology Letters. 87, 297–308, https://doi.org/10.1016/0378-1097(90)90470-B (1990). - PubMed
  82. Ferry, J. G. Enzymology of one-carbon metabolism in methanogenic pathways. FEMS Microbiology Reviews 23, 13–38, https://doi.org/10.1016/S0168-6445(98)00029-1 (1999). - PubMed
  83. Leadbetter, J. R. & Breznak, J. A. Physiological ecology of Methanobrevibacter cuticularis sp. nov. and Methanobrevibacter curvatus sp. nov., isolated from the hindgut of the termite Reticulitermes flavipe. Applied and Environmental Mircobiology 62, 3620–3631 (1996). - PubMed
  84. Marie, D., Partensky, F., Jacquet, S. & Vaulot, D. Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBR Green I. Applied and Environmental Microbiology 63, 186–193 (1997). - PubMed
  85. Muyzer, G., de Waal, E. C. & Uitterlinden, A. G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Mircobiology 59, 695–700 (1993). - PubMed
  86. Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proceedings of the National Academy of Sciences of the United States of America 108, 4516–4522, https://doi.org/10.1073/pnas.1000080107 (2011). - PubMed
  87. Magoč, T. & Salzberg, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963, https://doi.org/10.1093/bioinformatics/btr507 (2011). - PubMed
  88. Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nature Methods 7, 335–336, https://doi.org/10.1038/nmeth.f.303 (2010). - PubMed
  89. Bokulich, N. A. et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nature methods 10, 57–59, https://doi.org/10.1038/nmeth.2276 (2013). - PubMed
  90. Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature Methods 10, 996–998, https://doi.org/10.1038/nmeth.2604  (2013). - PubMed
  91. Wang, Q. et al. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology 73, 5261–5267, https://doi.org/10.1128/AEM.00062-07 (2007). - PubMed
  92. Pruesse, E. et al. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Research 35, 7188–7196, https://doi.org/10.1093/nar/gkm864 (2007). - PubMed
  93. Tamura, K., Dudley, J., Nei, M. & Kumar, S. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24, 1596–1599, https://doi.org/10.1093/molbev/msm092 (2007). - PubMed
  94. Li, D., Liu, C. M., Luo, R., Sadakane, K. & Lam, T. W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676, https://doi.org/10.1093/bioinformatics/btv033 (2015). - PubMed
  95. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760, https://doi.org/10.1093/bioinformatics/btp324  (2009). - PubMed
  96. Zhu, W., Lomsadze, A. & Borodovsky, M. Ab initio gene identification in metagenomic sequences. Nucleic Acids Research 38, e132–e132, https://doi.org/10.1093/nar/gkq275 (2010). - PubMed
  97. Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659, https://doi.org/10.1093/bioinformatics/btl158 (2006). - PubMed
  98. Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nature Methods 12, 59–60, https://doi.org/10.1038/nmeth.3176 (2015). - PubMed
  99. Liu, X. et al. A novel data structure to support ultra-fast taxonomic classification of metagenomic sequences with k-mer signatures. Bioinformatics 34, 171–178, https://doi.org/10.1093/bioinformatics/btx432 (2018). - PubMed
  100. Oksanen, J. et al. R package for community ecologists: popular ordination methods, ecological null models & diversity analysis (version 3.4.3). https://CRAN.R-project.org/package=vegan (2019). - PubMed
  101. ter Braak, C. T. F. & Smilauer, P. CANOCO reference manual and CanoDraw for windows user’s guide: software for canonical community ordination (version 4.5). (Microcomputer Power). Ithaca NY, USA: www.canoco.com (2002). - PubMed

Publication Types