Display options
Share it on

Plast Reconstr Surg Glob Open. 2020 Apr 29;8(4):e2743. doi: 10.1097/GOX.0000000000002743. eCollection 2020 Apr.

Functional Validation of a New Alginate-based Hydrogel Scaffold Combined with Mesenchymal Stem Cells in a Rat Hard Palate Cleft Model.

Plastic and reconstructive surgery. Global open

Marie Naudot, Julien Davrou, Az-Eddine Djebara, Anaïs Barre, Nolwenn Lavagen, Sandrine Lardière, Soufiane Zakaria Azdad, Luciane Zabijak, Stéphane Lack, Bernard Devauchelle, Jean-Pierre Marolleau, Sophie Le Ricousse

Affiliations

  1. Research Unit 7516, CHIMERE, Jules Verne University of Picardie, Amiens, France.
  2. Department of Maxillofacial Surgery, Pitié Salpêtrière Hospital, AP-HP, Paris, France.
  3. Facing Faces Institute, Amiens, France.
  4. Department of Orthopaedic Surgery, Amiens University Hospital, Amiens, France.
  5. Department of Maxillofacial Surgery, Amiens University Hospital, Amiens, France.
  6. R&D Department, Les Laboratoires Brothier, Nanterre, France.
  7. Department of Pathology and Cytology, Amiens University Hospital, Amiens, France.
  8. Platform ICAP, Jules Verne University of Picardie, Amiens, France.
  9. Research Unit 4666, HEMATIM, Jules Verne University of Picardie, Amiens, France.
  10. Department of Haematology, Amiens University Hospital, Amiens, France.

PMID: 32440413 PMCID: PMC7209877 DOI: 10.1097/GOX.0000000000002743

Abstract

BACKGROUND: One of the major difficulties in cleft palate repair is the requirement for several surgical procedures and autologous bone grafting to form a bony bridge across the cleft defect. Engineered tissue, composed of a biomaterial scaffold and multipotent stem cells, may be a useful alternative for minimizing the non-negligible risk of donor site morbidity. The present study was designed to confirm the healing and osteogenic properties of a novel alginate-based hydrogel in palate repair.

METHODS: Matrix constructs, seeded with allogeneic bone marrow-derived mesenchymal stem cells (BM-MSCs) or not, were incorporated into a surgically created, critical-sized cleft palate defect in the rat. Control with no scaffold was also tested. Bone formation was assessed using microcomputed tomography at weeks 2, 4, 8, and 12 and a histologic analysis at week 12.

RESULTS: At 12 weeks, the proportion of bone filling associated with the use of hydrogel scaffold alone did not differ significantly from the values observed in the scaffold-free experiment (61.01% ± 5.288% versus 36.91% ± 5.132%;

CONCLUSIONS: In a relevant in vivo model of cleft palate in the rat, we confirmed the alginate-based hydrogel's biocompatibility and real advantages for tissue healing. Addition of BM-MSCs stimulated bone formation in the center of the implant, demonstrating the new biomaterial's potential for use as a bone substitute grafting material for cleft palate repair.

Copyright © 2020 The Authors. Published by Wolters Kluwer Health, Inc. on behalf of The American Society of Plastic Surgeons.

Conflict of interest statement

Disclosure: M.N., J.D., Az.-E.D., N.L., S.Z.A., and L.Z. declare that they have no competing or commercial interests. A.B., B.D., J.P.M. and S.L.R. are cited as co-inventors on the corresponding paten

References

  1. Tissue Eng Part A. 2015 Jan;21(1-2):85-95 - PubMed
  2. Ann Anat. 2012 Nov;194(6):545-8 - PubMed
  3. J Craniomaxillofac Surg. 2012 Jan;40(1):2-7 - PubMed
  4. Arch Oral Biol. 2015 Oct;60(10):1517-32 - PubMed
  5. J Plast Reconstr Aesthet Surg. 2013 Jan;66(1):37-42 - PubMed
  6. Br J Oral Maxillofac Surg. 2018 Jul;56(6):453-462 - PubMed
  7. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009 Aug;108(2):e1-6 - PubMed
  8. Plast Reconstr Surg. 2006 Mar;117(3):857-63 - PubMed
  9. Methods Mol Biol. 2016;1416:123-46 - PubMed
  10. Dent Mater. 2015 Apr;31(4):317-38 - PubMed
  11. Biomed Res Int. 2015;2015:341327 - PubMed
  12. Br J Oral Maxillofac Surg. 2013 Dec;51(8):851-7 - PubMed
  13. Int J Oral Maxillofac Surg. 2006 Jun;35(6):551-5 - PubMed
  14. J Tissue Eng Regen Med. 2015 Mar;9(3):276-85 - PubMed
  15. Nat Rev Genet. 2011 Mar;12(3):167-78 - PubMed
  16. Congenit Anom (Kyoto). 2006 Mar;46(1):21-5 - PubMed
  17. Histochem Cell Biol. 2017 Mar;147(3):377-388 - PubMed
  18. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008 Apr;105(4):440-4 - PubMed
  19. Int J Pediatr Otorhinolaryngol. 2019 Sep;124:164-172 - PubMed
  20. Clin Oral Investig. 2017 Nov;21(8):2521-2534 - PubMed
  21. Clin Implant Dent Relat Res. 2017 Oct;19(5):793-801 - PubMed
  22. Int J Oral Maxillofac Surg. 2018 Mar;47(3):345-356 - PubMed
  23. Ann Maxillofac Surg. 2018 Jul-Dec;8(2):315-319 - PubMed
  24. Tissue Eng. 2005 May-Jun;11(5-6):787-802 - PubMed
  25. PLoS One. 2018 Jan 5;13(1):e0190901 - PubMed
  26. Birth Defects Res A Clin Mol Teratol. 2008 Feb;82(2):63-77 - PubMed
  27. Cytotherapy. 2015 Jul;17(7):860-73 - PubMed
  28. J Craniomaxillofac Surg. 2014 Jul;42(5):e117-24 - PubMed
  29. J Oral Maxillofac Surg. 2019 May;77(5):1074.e1-1074.e7 - PubMed
  30. Cell Transplant. 2013;22(5):767-77 - PubMed
  31. J Tissue Eng Regen Med. 2017 Jun;11(6):1907-1914 - PubMed
  32. Arch Oral Biol. 2000 Jan;45(1):87-94 - PubMed
  33. PeerJ. 2016 May 19;4:e2040 - PubMed
  34. J Craniomaxillofac Surg. 2014 Dec;42(8):1840-6 - PubMed

Publication Types