Display options
Share it on

Cancers (Basel). 2020 May 29;12(6). doi: 10.3390/cancers12061403.

Spectrum-Wide Exploration of Human Adenoviruses for Breast Cancer Therapy.

Cancers

Nicolas Mach, Jian Gao, Lukas Schaffarczyk, Sebastian Janz, Eric Ehrke-Schulz, Thomas Dittmar, Anja Ehrhardt, Wenli Zhang

Affiliations

  1. Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany.
  2. Chair for Immunology & Experimental Oncology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany.

PMID: 32486014 PMCID: PMC7352696 DOI: 10.3390/cancers12061403

Abstract

Oncolytic adenoviruses (Ads) are promising tools for cancer therapeutics. However, most Ad-based therapies utilize Ad type 5 (Ad5), which displays unsatisfying efficiency in clinical trials, partly due to the low expression levels of its primary coxsackievirus and adenovirus receptor (CAR) on tumor cells. Since the efficacy of virotherapy strongly relies on efficient transduction of targeted tumor cells, initial screening of a broad range of viral agents to identify the most effective vehicles is essential. Using a novel Ad library consisting of numerous human Ads representing known Ad species, we evaluated the transduction efficiencies in four breast cancer (BC) cell lines. For each cell line over 20 Ad types were screened in a high-throughput manner based on reporter assays. Ad types featuring high transduction efficiencies were further investigated with respect to the percentage of transgene-positive cells and efficiencies of cellular entry in individual cell lines. Additionally, oncolytic assay was performed to test tumor cell lysis efficacy of selected Ad types. We found that all analyzed BC cell lines show low expression levels of CAR, while alternative receptors such as CD46, DSG-2, and integrins were also detected. We identified Ad3, Ad35, Ad37, and Ad52 as potential candidates for BC virotherapy.

Keywords: adenovirus; adenovirus receptors; breast cancer; broad spectrum; cellular entry; high-throughput screening; virotherapy

References

  1. Urology. 2005 Aug;66(2):441-6 - PubMed
  2. Cancer Res. 2002 Aug 1;62(15):4273-81 - PubMed
  3. Cell Death Differ. 2006 Aug;13(8):1371-7 - PubMed
  4. Biomedicines. 2016 Sep 19;4(3): - PubMed
  5. PLoS Pathog. 2015 Feb 12;11(2):e1004657 - PubMed
  6. Oncoimmunology. 2018 Aug 27;7(12):e1503032 - PubMed
  7. Front Oncol. 2017 Sep 11;7:202 - PubMed
  8. Nat Protoc. 2009;4(4):547-64 - PubMed
  9. Cell Rep. 2017 May 23;19(8):1698-1709 - PubMed
  10. Nat Biotechnol. 2012 Jul 10;30(7):658-70 - PubMed
  11. Oncologist. 2011;16 Suppl 1:71-8 - PubMed
  12. Cancers (Basel). 2018 Jun 14;10(6): - PubMed
  13. Oncotarget. 2017 Jul 11;8(28):46652-46662 - PubMed
  14. Mol Ther Methods Clin Dev. 2016 Mar 02;3:16001 - PubMed
  15. Int J Surg Pathol. 2010 Jun;18(3 Suppl):167S-169S - PubMed
  16. Proc Natl Acad Sci U S A. 1998 Oct 27;95(22):13159-64 - PubMed
  17. Oncoimmunology. 2015 Dec 8;5(2):e1117740 - PubMed
  18. J Urol. 2007 Mar;177(3):1148-56 - PubMed
  19. Nat Biotechnol. 2012 May;30(5):440-6 - PubMed
  20. J Virol. 2003 Aug;77(15):8263-71 - PubMed
  21. Hum Gene Ther Methods. 2018 Jun;29(3):124-134 - PubMed
  22. Cancer Res. 1999 Jan 15;59(2):325-30 - PubMed
  23. Nat Med. 2003 Nov;9(11):1408-12 - PubMed
  24. Clin Exp Med. 2005 Oct;5(3):122-8 - PubMed
  25. Vaccine. 2010 Jan 22;28(4):950-7 - PubMed
  26. Mol Ther. 2015 Oct;23(10):1630-40 - PubMed
  27. Cancer Biol Ther. 2003 Sep-Oct;2(5):511-5 - PubMed
  28. Radiat Res. 2001 Jan;155(1 Pt 2):201-207 - PubMed
  29. J Virol. 2007 Jun;81(11):5978-84 - PubMed
  30. J Cell Sci. 2004 May 1;117(Pt 11):2173-81 - PubMed
  31. Science. 1991 Apr 19;252(5004):431-4 - PubMed
  32. Recent Pat Anticancer Drug Discov. 2014 May;9(2):153-75 - PubMed
  33. Nat Med. 2011 Jan;17(1):96-104 - PubMed
  34. Mol Ther. 2007 Apr;15(4):651-9 - PubMed
  35. Breast. 2011 Oct;20 Suppl 3:S20-7 - PubMed
  36. Adv Drug Deliv Rev. 2009 Jul 2;61(7-8):554-71 - PubMed
  37. Cancer Res. 1949 Aug;9(8):473-80 - PubMed
  38. Nat Med. 2000 Oct;6(10):1134-9 - PubMed
  39. Mol Ther. 2010 Oct;18(10):1874-84 - PubMed
  40. Proc Natl Acad Sci U S A. 2018 May 1;115(18):E4264-E4273 - PubMed
  41. Endocr Relat Cancer. 2011 Apr 02;18(3):311-21 - PubMed
  42. Methods Enzymol. 2010;477:125-44 - PubMed
  43. Breast Cancer. 2015 Mar;22(2):101-16 - PubMed
  44. Eur J Microbiol Immunol (Bp). 2014 Mar;4(1):26-33 - PubMed
  45. J Virol. 2002 May;76(9):4612-20 - PubMed
  46. Nat Rev Cancer. 2018 Jul;18(7):419-432 - PubMed
  47. J Virol. 2012 Oct;86(19):10862-5 - PubMed
  48. Nature. 2014 Aug 14;512(7513):155-60 - PubMed
  49. J Invest Dermatol. 2008 Apr;128(4):988-98 - PubMed
  50. Proc Natl Acad Sci U S A. 1953 Nov;39(11):1147-8 - PubMed
  51. Nat Med. 2011 Jan;17(1):105-9 - PubMed
  52. J Virol. 2000 Aug;74(16):7691-3 - PubMed
  53. Mol Ther. 2010 Feb;18(2):429-34 - PubMed
  54. Cold Spring Harb Protoc. 2016 Apr 01;2016(4):pdb.prot087379 - PubMed
  55. Cancer Gene Ther. 2011 Apr;18(4):288-96 - PubMed
  56. Oncotarget. 2017 Jun 2;8(44):76044-76056 - PubMed
  57. Virology. 2009 Nov 25;394(2):311-20 - PubMed
  58. Nat Med. 1997 Jun;3(6):639-45 - PubMed
  59. CA Cancer J Clin. 2018 Nov;68(6):394-424 - PubMed
  60. Hum Gene Ther. 2007 Jan;18(1):51-62 - PubMed
  61. Curr Opin Virol. 2016 Dec;21:9-15 - PubMed
  62. Nat Rev Drug Discov. 2015 Sep;14(9):642-62 - PubMed
  63. J Virol. 2002 Sep;76(17):8834-41 - PubMed
  64. Clin Cancer Res. 2011 Nov 1;17(21):6712-22 - PubMed

Publication Types

Grant support