Display options
Share it on

Antioxidants (Basel). 2020 Jun 15;9(6). doi: 10.3390/antiox9060524.

Toxicity of Necrostatin-1 in Parkinson's Disease Models.

Antioxidants (Basel, Switzerland)

Eva Alegre-Cortés, Alicia Muriel-González, Saray Canales-Cortés, Elisabet Uribe-Carretero, Guadalupe Martínez-Chacón, Ana Aiastui, Adolfo López de Munain, Mireia Niso-Santano, Rosa A Gonzalez-Polo, José M Fuentes, Sokhna M S Yakhine-Diop

Affiliations

  1. Depto. Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura Avda de la Universidad s/n, 10003 Cáceres, Spain.
  2. Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28049 Madrid, Spain.
  3. Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 10003 Cáceres, Spain.
  4. Cell Culture Plataform, Donostia University Hospital, 20014 San Sebastián, Spain.
  5. Neuroscience Area of Biodonostia Health Research Institute, Donostia University Hospital, 20014 San Sebastián, Spain.
  6. Department of Neurology, Donostia University Hospital, 20014 San Sebastian, Spain.
  7. Ilundain Fundazioa, 20014 San Sebastian, Spain.
  8. Department of Neurosciences, University of the Basque Country UPV-EHU, 20014 San Sebastián, Spain.

PMID: 32549347 PMCID: PMC7346148 DOI: 10.3390/antiox9060524

Abstract

Parkinson's disease (PD) is a neurodegenerative disorder that is characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta. This neuronal loss, inherent to age, is related to exposure to environmental toxins and/or a genetic predisposition. PD-induced cell death has been studied thoroughly, but its characterization remains elusive. To date, several types of cell death, including apoptosis, autophagy-induced cell death, and necrosis, have been implicated in PD progression. In this study, we evaluated necroptosis, which is a programmed type of necrosis, in primary fibroblasts from PD patients with and without the G2019S

Keywords: MLKL; RIP; mitochondria; mitophagy; necroptosis; rotenone

Conflict of interest statement

The authors declare no conflict of interest.

References

  1. J Cell Sci. 2011 Apr 1;124(Pt 7):1115-25 - PubMed
  2. Toxicology. 2014 Oct 3;324:1-9 - PubMed
  3. Cell Rep. 2018 Feb 20;22(8):2066-2079 - PubMed
  4. Cell Mol Immunol. 2010 Jul;7(4):243-9 - PubMed
  5. Hum Mol Genet. 2012 Nov 1;21(21):4680-702 - PubMed
  6. Genes Dev. 2013 Aug 1;27(15):1640-9 - PubMed
  7. Hum Mol Genet. 2012 Feb 1;21(3):511-25 - PubMed
  8. Cell Death Discov. 2017 Feb 27;3:17013 - PubMed
  9. PLoS Genet. 2014 May 29;10(5):e1004279 - PubMed
  10. Dig Liver Dis. 2017 Nov;49(11):1201-1210 - PubMed
  11. Biochem Biophys Res Commun. 2018 Jan 15;495(3):2178-2183 - PubMed
  12. Cell Death Dis. 2017 Jun 29;8(6):e2905 - PubMed
  13. Cell Death Differ. 2020 Apr;27(4):1169-1185 - PubMed
  14. EMBO Rep. 2015 Jun;16(6):700-8 - PubMed
  15. Free Radic Biol Med. 2010 May 15;48(10):1370-81 - PubMed
  16. Mol Neurobiol. 2019 Apr;56(4):2466-2481 - PubMed
  17. Front Neurol. 2018 Jun 19;9:455 - PubMed
  18. PLoS One. 2019 Apr 25;14(4):e0215277 - PubMed
  19. Brain Res. 2004 Jun 18;1011(2):170-6 - PubMed
  20. J Biol Chem. 2003 Mar 7;278(10):8516-25 - PubMed
  21. Cell Mol Life Sci. 2013 Jan;70(1):121-36 - PubMed
  22. Cell Res. 2013 Aug;23(8):994-1006 - PubMed
  23. Neural Regen Res. 2015 Jul;10(7):1120-4 - PubMed
  24. Nat Cell Biol. 2013 Oct;15(10):1197-1205 - PubMed
  25. Cold Spring Harb Perspect Med. 2012 Aug 01;2(8): - PubMed
  26. EMBO J. 2006 Aug 23;25(16):3900-11 - PubMed
  27. Mol Cell Oncol. 2015 Aug 20;3(2):e1046579 - PubMed
  28. Neurosci Lett. 2014 Feb 7;560:46-50 - PubMed
  29. Cell Death Dis. 2019 Nov 5;10(11):840 - PubMed
  30. Lab Invest. 2020 Mar;100(3):503-511 - PubMed
  31. Biochem Pharmacol. 2018 Jul;153:242-247 - PubMed
  32. Oncotarget. 2016 Apr 12;7(15):19367-81 - PubMed

Publication Types

Grant support