Display options
Share it on

Eng Life Sci. 2018 Jun 01;18(7):475-483. doi: 10.1002/elsc.201800026. eCollection 2018 Jul.

An enhanced bioindicator for calorimetric monitoring of prophage-activating chemicals in the trace concentration range.

Engineering in life sciences

Juan Xu, Feng-Lei Jiang, Yi Liu, Bärbel Kiesel, Thomas Maskow

Affiliations

  1. State Key Laboratory of Virology College of Chemistry and Molecule Sciences Wuhan University Wuhan P.R. China.
  2. Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education) College of Chemistry and Molecule Sciences Wuhan University Wuhan P.R. China.
  3. College of Chemistry and Chemical Engineering Wuhan University of Science and Technology Wuhan P.R. China.
  4. Department of Environmental Microbiology UFZ-Helmholtz Centre for Environmental Research Leipzig Germany.

PMID: 32624928 PMCID: PMC6999466 DOI: 10.1002/elsc.201800026

Abstract

Viruses that infect bacteria (bacteriophages) can either lyse bacteria directly or integrate their genome into the bacterial genome. In the latter case, the viral genome (called prophage) remains dormant, and both phages and bacteria are able to survive in this state. But the silent prophages can be reactivated by, e.g., chemicals, accompanied by the release of substantial quantities of phage particles that further infect other phage-sensitive bacteria, thus harming ecosystems or technical systems by way of a viral bloom. Recently, a calorimetric method was developed to monitor the prophage-activating properties of chemicals. The method evaluates the difference in the metabolic heat of the

© 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

Keywords: Bacteriophage; Bioindicator; Biosensor; Calorimetry; Lysogenic cycle; Toxicity test

References

  1. J Virol Methods. 2003 Sep;112(1-2):137-43 - PubMed
  2. Microb Biotechnol. 2018 Nov;11(6):1112-1120 - PubMed
  3. Annu Rev Virol. 2014 Nov;1(1):307-31 - PubMed
  4. Nature. 1959 Oct 3;184(Suppl 14):1079-80 - PubMed
  5. J Am Chem Soc. 2014 Jan 8;136(1):116-8 - PubMed
  6. Viruses. 2012 Oct 19;4(10):2291-311 - PubMed
  7. J Microbiol Methods. 2013 Nov;95(2):129-37 - PubMed
  8. J Virol Methods. 2010 Sep;168(1-2):126-32 - PubMed
  9. Sensors (Basel). 2015 Feb 03;15(2):3351-61 - PubMed
  10. Int J Med Microbiol. 2004 Sep;294(2-3):115-21 - PubMed
  11. Bacteriophage. 2012 Apr 1;2(2):98-104 - PubMed
  12. Infect Immun. 2002 Aug;70(8):3985-93 - PubMed
  13. ISME J. 2014 Jul;8(7):1391-402 - PubMed
  14. J Microbiol Methods. 2012 Jan;88(1):41-6 - PubMed
  15. Appl Microbiol Biotechnol. 2011 Oct;92(1):55-66 - PubMed
  16. PeerJ. 2015 May 28;3:e985 - PubMed
  17. Curr Opin Struct Biol. 2010 Oct;20(5):598-605 - PubMed
  18. Chem Rev. 1997 Apr 1;97(2):391-410 - PubMed
  19. ISME J. 2008 Jun;2(6):579-89 - PubMed
  20. Nat Commun. 2013;4:2926 - PubMed
  21. Water Res. 2010 Aug;44(15):4550-8 - PubMed
  22. Appl Environ Microbiol. 2005 Feb;71(2):842-50 - PubMed
  23. Genetics. 2006 Jan;172(1):17-26 - PubMed
  24. Res Microbiol. 2001 Oct;152(8):687-95 - PubMed
  25. Math Biosci. 1998 Apr;149(1):57-76 - PubMed
  26. Appl Spectrosc. 2007 Jul;61(7):679-85 - PubMed

Publication Types