Display options
Share it on

Sci Rep. 2020 Jul 20;10(1):12003. doi: 10.1038/s41598-020-68681-0.

1.2 MV/cm pulsed electric fields promote transthyretin aggregate degradation.

Scientific reports

Gen Urabe, Takashi Sato, Gomaru Nakamura, Yoshihiro Kobashigawa, Hiroshi Morioka, Sunao Katsuki

Affiliations

  1. Graduate School of Science and Technology, Kumamoto University, Kumamoto, 860-8555, Japan. [email protected].
  2. Department of Analytical and Biophysical Chemistry, Kumamoto University, Kumamoto, 862-0973, Japan.
  3. Graduate School of Science and Technology, Kumamoto University, Kumamoto, 860-8555, Japan.
  4. Institute of Pulsed Power Science, Kumamoto University, Kumamoto, 860-8555, Japan. [email protected].

PMID: 32686729 PMCID: PMC7371718 DOI: 10.1038/s41598-020-68681-0

Abstract

Numerous theoretical studies have been conducted on the effects of high-voltage electric fields on proteins, but few have produced experimental evidence. To acquire experimental data for the amyloid disassemble theory, we exposed transthyretin aggregates to 1,000 ns 1.26 MV/cm pulsed electric fields (PEFs) to promote transthyretin degradation. The process produced no changes in pH, and the resulting temperature increases were < 1 °C. We conclude that the physical effects of PEFs, rather than thermal or chemical effects, facilitate aggregate degradation.

References

  1. Robinson, K. R. The responses of cells to electrical fields: A review. J. Cell Biol. 101, 2023–2027 (1985). - PubMed
  2. Chang, F. & Minc, N. Electrochemical control of cell and tissue polarity. Annu. Rev. Cell Dev. Biol. 30, 317–336 (2014). - PubMed
  3. Levine, Z. A. & Vernier, P. T. Life cycle of an electropore: Field-dependent and field-independent steps in pore creation and annihilation. J Membrane Biol 236, 27–36 (2010). - PubMed
  4. Perrier, D. L., Rems, L. & Boukany, P. E. Lipid vesicles in pulsed electric fields: Fundamental principles of the membrane response and its biomedical applications. Adv. Coll. Interface. Sci. 249, 248–271 (2017). - PubMed
  5. Rems, L. & Miklavčič, D. Tutorial: Electroporation of cells in complex materials and tissue. J. Appl. Phys. 119, 201101 (2016). - PubMed
  6. Miklavcic, D., Rols, M.-P., Haberl Meglic, S., Rosazza, C. & Zumbusch, A. Gene electrotransfer: A mechanistic perspective. Curr. Gene Ther. 16, 98–129 (2016). - PubMed
  7. Chen, W. & Lee, R. C. Altered ion channel conductance and ionic selectivity induced by large imposed membrane potential pulse. Biophys. J. 67, 603–612 (1994). - PubMed
  8. Semenov, I., Xiao, S., Kang, D., Schoenbach, K. H. & Pakhomov, A. G. Cell stimulation and calcium mobilization by picosecond electric pulses. Bioelectrochemistry 105, 65–71 (2015). - PubMed
  9. Barzanjeh, S., Salari, V., Tuszynski, J. A., Cifra, M. & Simon, C. Optomechanical proposal for monitoring microtubule mechanical vibrations. Phys. Rev. E 96, 20 (2017). - PubMed
  10. Bezanilla, F. How membrane proteins sense voltage. Nat. Rev. Mol. Cell Biol. 9, 323–332 (2008). - PubMed
  11. Tuszynski, J. A., Wenger, C., Friesen, D. E. & Preto, J. An overview of sub-cellular mechanisms involved in the action of TTFields. Int. J. Environ. Res. Public Health 13, 1–23 (2016). - PubMed
  12. Carr, L. et al. Calcium-independent disruption of microtubule dynamics by nanosecond pulsed electric fields in U87 human glioblastoma cells. Sci. Rep. 7, 41267 (2017). - PubMed
  13. Dutta, D., Asmar, A. & Stacey, M. Effects of nanosecond pulse electric fields on cellular elasticity. Micron 72, 15–20 (2015). - PubMed
  14. Stacey, M., Fox, P., Buescher, S. & Kolb, J. Nanosecond pulsed electric field induced cytoskeleton, nuclear membrane and telomere damage adversely impact cell survival. Bioelectrochemistry 82, 131–134 (2011). - PubMed
  15. Thompson, G. L., Roth, C., Tolstykh, G., Kuipers, M. & Ibey, B. L. Disruption of the actin cortex contributes to susceptibility of mammalian cells to nanosecond pulsed electric fields. Bioelectromagnetics 35, 262–272 (2014). - PubMed
  16. Beebe, S. J. Considering effects of nanosecond pulsed electric fields on proteins. Bioelectrochemistry 103, 52–59 (2015). - PubMed
  17. Timmons, J. J., Preto, J., Tuszynski, J. A. & Wong, E. T. Tubulin’s response to external electric fields by molecular dynamics simulations. PLoS One 13, e0202141 (2018). - PubMed
  18. English, N. J. & Waldron, C. J. Perspectives on external electric fields in molecular simulation: Progress, prospects and challenges. Phys. Chem. Chem. Phys. 17, 12407–12440 (2015). - PubMed
  19. Marracino, P. et al. Tubulin response to intense nanosecond-scale electric field in molecular dynamics simulation. Sci. Rep. 9, 10477 (2019). - PubMed
  20. della Valle, E., Marracino, P., Pakhomova, O., Liberti, M. & Apollonio, F. Nanosecond pulsed electric signals can affect electrostatic environment of proteins below the threshold of conformational effects: The case study of SOD1 with a molecular simulation study. PLoS One 14, 1–19 (2019). - PubMed
  21. Marracino, P., Apollonio, F., Liberti, M., D’Inzeo, G. & Amadei, A. Effect of high exogenous electric pulses on protein conformation: Myoglobin as a case study. J. Phys. Chem. B 117, 2273–2279 (2013). - PubMed
  22. Baumketner, A. Electric field as a disaggregating agent for amyloid fibrils. J. Phys. Chem. B 118, 14578–14589 (2014). - PubMed
  23. Pandey, N. K. et al. Disruption of human serum albumin fibrils by a static electric field. J. Phys. D. Appl. Phys. 47, 20 (2014). - PubMed
  24. Pakhomova, O. N. et al. Oxidative effects of nanosecond pulsed electric field exposure in cells and cell-free media. Arch. Biochem. Biophys. 527, 55–64 (2012). - PubMed
  25. Takahashi, M., Handa, A., Yamaguchi, Y., Kodama, R. & Chiba, K. Anodic oxidative modification of egg white for heat treatment. J. Agric. Food Chem. 64, 6503–6507 (2016). - PubMed
  26. Zhao, W., Tang, Y., Lu, L., Chen, X. & Li, C. Review: Pulsed electric fields processing of protein-based foods. Food Bioprocess Technol. 7, 114–125 (2014). - PubMed
  27. Wei, Z., Ruijin, Y., Yali, T., Wenbin, Z. & Xiao, H. Investigation of the protein–protein aggregation of egg white proteins under pulsed electric fields. J. Agric. Food Chem. 57, 3571–3577 (2009). - PubMed
  28. Blake, C. & Serpell, L. Synchrotron X-ray studies suggest that the core of the transthyretin amyloid fibril is a continuous β-sheet helix. Structure 4, 989–998 (1996). - PubMed
  29. Powers, E. T., Kelly, J. W., Connelly, S., Fearns, C. & Johnson, S. M. The transthyretin amyloidoses: From delineating the molecular mechanism of aggregation linked to pathology to a regulatory-agency-approved drug. J. Mol. Biol. 421, 185–203 (2012). - PubMed
  30. Kučera, O. & Havelka, D. Mechano-electrical vibrations of microtubules-link to subcellular morphology. BioSystems 109, 346–355 (2012). - PubMed
  31. Chou, K. C. Low-frequency collective motion in biomacromolecules and its biological functions. Biophys. Chem. 30, 3–48 (1988). - PubMed
  32. Ballestrasse, C. L., Ruggeri, R. T. & Beck, T. R. Calculations of the pH changes produced in body tissue by a spherical stimulation electrode. Ann. Biomed. Eng. 13, 405–424 (1985). - PubMed
  33. Meneses, N., Jaeger, H. & Knorr, D. PH-changes during pulsed electric field treatments—numerical simulation and in situ impact on polyphenoloxidase inactivation. Innov. Food Sci. Emerg. Technol. 12, 499–504 (2011). - PubMed
  34. Kuhn, A. T. & Chan, C. Y. pH changes at near-electrode surfaces. J. Appl. Electrochem. 13, 189–207 (1983). - PubMed
  35. Sharma, P. & Bhatti, T. S. A review on electrochemical double-layer capacitors. Energy Convers. Manag. 51, 2901–2912 (2010). - PubMed
  36. Germain, P. S., Pell, W. G. & Conway, B. E. Evaluation and origins of the difference between double-layer capacitance behaviour at Au-metal and oxidized Au surfaces. Electrochim. Acta 49, 1775–1788 (2004). - PubMed
  37. Singh, M. B. & Kant, R. Debye–Falkenhagen dynamics of electric double layer in presence of electrode heterogeneities. J. Electroanal. Chem. 704, 197–207 (2013). - PubMed
  38. Singh, M. B. & Kant, R. Theory of electric double layer dynamics at blocking electrode (2011). - PubMed
  39. Wakita, Y. et al. Characterization of non-amyloidogenic G101S transthyretin. Biol. Pharm. Bull. 41, 628–636 (2018). - PubMed
  40. Schoenbach, K. H. et al. 250 kV sub-nanosecond pulse generator with adjustable pulse-width. IEEE Trans. Dielectr. Electr. Insul. 14, 884–888 (2007). - PubMed

Publication Types