Display options
Share it on

Neurooncol Adv. 2019 Sep 28;1(1):vdz029. doi: 10.1093/noajnl/vdz029. eCollection 2019.

The invasive proteome of glioblastoma revealed by laser-capture microdissection.

Neuro-oncology advances

Thomas Daubon, Joris Guyon, Anne-Aurélie Raymond, Benjamin Dartigues, Justine Rudewicz, Zakaria Ezzoukhry, Jean-William Dupuy, John M J Herbert, Frédéric Saltel, Rolf Bjerkvig, Macha Nikolski, Andreas Bikfalvi

Affiliations

  1. INSERM U1029, Pessac, France.
  2. LAMC, University of Bordeaux, Bordeaux, France.
  3. KG Jebsen Brain Tumour Research Center, University of Bergen, Bergen, Norway.
  4. Oncoprot, TBM Core US005 University of Bordeaux, France.
  5. Bordeaux Bioinformatics Center, CBiB University of Bordeaux, France.
  6. Plateforme Protéome, University of Bordeaux, Bordeaux, France.
  7. Disease Gene Discovery Limited, London, UK.
  8. University Bordeaux, INSERM UMR1053, BaRITOn Bordeaux Research in Translational Oncology, Bordeaux, France.
  9. NorLux Neuro-Oncology, Department of Biomedicine University of Bergen, Norway.
  10. Oncology Department, Luxembourg Institute of Health 84, Val Fleuri, Luxembourg.
  11. LaBRI, UMR5800 University of Bordeaux, Talence, France.

PMID: 32642662 PMCID: PMC7212852 DOI: 10.1093/noajnl/vdz029

Abstract

BACKGROUND: Glioblastomas are heterogeneous tumors composed of a necrotic and tumor core and an invasive periphery.

METHODS: Here, we performed a proteomics analysis of laser-capture micro-dissected glioblastoma core and invasive areas of patient-derived xenografts.

RESULTS: Bioinformatics analysis identified enriched proteins in central and invasive tumor areas. Novel markers of invasion were identified, the genes proteolipid protein 1 (PLP1) and Dynamin-1 (DNM1), which were subsequently validated in tumors and by functional assays.

CONCLUSIONS: In summary, our results identify new networks and molecules that may play an important role in glioblastoma development and may constitute potential novel therapeutic targets.

© The Author(s) 2019. Published by Oxford University Press, the Society for Neuro-Oncology and the European Association of Neuro-Oncology.

Keywords: glioblastoma; intratumor heterogeneity; invasion; patient-derived xenograft; proteomics analysis

References

  1. Clin Cancer Res. 2012 Jul 1;18(13):3628-36 - PubMed
  2. PLoS One. 2013 Nov 13;8(11):e81049 - PubMed
  3. BMC Cancer. 2009 Dec 29;9:465 - PubMed
  4. PLoS Comput Biol. 2013;9(9):e1003237 - PubMed
  5. J Cereb Blood Flow Metab. 2018 Oct;38(10):1741-1753 - PubMed
  6. J Clin Oncol. 2010 May 20;28(15):2529-37 - PubMed
  7. N Engl J Med. 2013 Oct 17;369(16):1561-3 - PubMed
  8. Nat Commun. 2019 Mar 8;10(1):1146 - PubMed
  9. Mol Cell Proteomics. 2016 Feb;15(2):481-92 - PubMed
  10. Cancer Cell. 2012 May 15;21(5):710-710.e1 - PubMed
  11. Mol Cell Proteomics. 2009 Nov;8(11):2595-612 - PubMed
  12. Science. 2018 Apr 20;360(6386):331-335 - PubMed
  13. Acta Neuropathol. 2016 Jun;131(6):803-20 - PubMed
  14. Cancer Invest. 2019;37(3):144-155 - PubMed
  15. N Engl J Med. 2005 Mar 10;352(10):987-96 - PubMed
  16. Proc Natl Acad Sci U S A. 2011 Mar 1;108(9):3749-54 - PubMed
  17. Electrophoresis. 1999 Dec;20(18):3551-67 - PubMed
  18. Oncogene. 2012 May 24;31(21):2691-702 - PubMed
  19. Clin Cancer Res. 1997 May;3(5):799-804 - PubMed
  20. Nat Commun. 2018 May 23;9(1):2031 - PubMed
  21. Oncotarget. 2016 May 31;7(22):31955-71 - PubMed
  22. Science. 2014 Jun 20;344(6190):1396-401 - PubMed
  23. Mol Cell Proteomics. 2013 Aug;12(8):2293-312 - PubMed
  24. Hepatology. 2017 Dec;66(6):2016-2028 - PubMed
  25. Int J Oncol. 2019 Feb;54(2):550-558 - PubMed

Publication Types