Display options
Share it on

Biomedicines. 2020 Jul 22;8(8). doi: 10.3390/biomedicines8080236.

Targeting NF-κB Signaling by Calebin A, a Compound of Turmeric, in Multicellular Tumor Microenvironment: Potential Role of Apoptosis Induction in CRC Cells.

Biomedicines

Constanze Buhrmann, Parviz Shayan, Kishore Banik, Ajaikumar B Kunnumakkara, Peter Kubatka, Lenka Koklesova, Mehdi Shakibaei, Su

Affiliations

  1. Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, Pettenkoferstrasse 11, D-80336 Munich, Germany.
  2. Department of Parasitology, Faculty of Veterinary Medicine, University of Tehran, Tehran 141556453, Iran.
  3. Cancer Biology Laboratory & DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences & Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India.
  4. Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia.
  5. Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia.

PMID: 32708030 PMCID: PMC7460490 DOI: 10.3390/biomedicines8080236

Abstract

Increasing lines of evidence suggest that chronic inflammation mediates most chronic diseases, including cancer. The transcription factor, NF-κB, has been shown to be a major regulator of inflammation and metastasis in tumor cells. Therefore, compounds or any natural agents that can inhibit NF-κB activation have the potential to prevent and treat cancer. However, the mechanism by which Calebin A, a component of turmeric, regulates inflammation and disrupts the interaction between HCT116 colorectal cancer (CRC) cells and multicellular tumor microenvironment (TME) is still poorly understood. The 3D-alginate HCT116 cell cultures in TME were treated with Calebin A, BMS-345541, and dithiothreitol (DTT) and examined for invasiveness, proliferation, and apoptosis. The mechanism of TME-induced malignancy of cancer cells was confirmed by phase contrast, Western blotting, immunofluorescence, and DNA-binding assay. We found through DNA binding assay, that Calebin A inhibited TME-induced NF-κB activation in a dose-dependent manner. As a result of this inhibition, NF-κB phosphorylation and NF-κB nuclear translocation were down-modulated. Calebin A, or IκB-kinase (IKK) inhibitor (BMS-345541) significantly inhibited the direct interaction of nuclear p65 to DNA, and interestingly this interaction was reversed by DTT. Calebin A also suppressed the expression of NF-κB-promoted anti-apoptotic (Bcl-2, Bcl-xL, survivin), proliferation (Cyclin D1), invasion (MMP-9), metastasis (CXCR4), and down-regulated apoptosis (Caspase-3) gene biomarkers, leading to apoptosis in HCT116 cells. These results suggest that Calebin A can suppress multicellular TME-promoted CRC cell invasion and malignancy by inhibiting the NF-κB-promoting inflammatory pathway associated with carcinogenesis, underlining the potential of Calebin A for CRC treatment.

Keywords: Calebin A; NF-κB signaling; apoptosis; colorectal cancer; tumor microenvironment

References

  1. World J Gastroenterol. 2004 Nov 15;10(22):3255-60 - PubMed
  2. Curr Opin Pharmacol. 2009 Aug;9(4):351-69 - PubMed
  3. Cancer Cell. 2004 Sep;6(3):203-8 - PubMed
  4. Biomed Pharmacother. 2019 Sep;117:109142 - PubMed
  5. Cells. 2016 Mar 29;5(2): - PubMed
  6. Front Biosci (Landmark Ed). 2019 Jun 1;24:1271-1283 - PubMed
  7. Antioxid Redox Signal. 2010 Sep 15;13(6):821-31 - PubMed
  8. Gene. 2020 Feb 5;726:144132 - PubMed
  9. Cell. 2012 Dec 21;151(7):1542-56 - PubMed
  10. J Mol Med (Berl). 2004 Jul;82(7):434-48 - PubMed
  11. Front Biosci. 2008 May 01;13:5094-107 - PubMed
  12. Cell. 2004 Aug 6;118(3):285-96 - PubMed
  13. J Biol Chem. 2006 Jun 23;281(25):17023-33 - PubMed
  14. Mol Cancer Res. 2008 Jun;6(6):1059-70 - PubMed
  15. J Biol Chem. 2010 Jun 18;285(25):19162-72 - PubMed
  16. Cancer Sci. 2007 Mar;98(3):268-74 - PubMed
  17. Int J Oncol. 2004 Oct;25(4):857-66 - PubMed
  18. Nature. 2004 Sep 23;431(7007):405-6 - PubMed
  19. Nutrients. 2018 Jul 12;10(7): - PubMed
  20. Proc Natl Acad Sci U S A. 1997 Sep 16;94(19):10057-62 - PubMed
  21. J Biol Chem. 2003 Jan 17;278(3):1450-6 - PubMed
  22. Lancet. 2019 Oct 19;394(10207):1467-1480 - PubMed
  23. J Biol Chem. 1997 Jun 13;272(24):15174-83 - PubMed
  24. Int J Mol Sci. 2020 Mar 31;21(7): - PubMed
  25. J Biol Chem. 1999 Mar 26;274(13):8531-8 - PubMed
  26. Exp Biol Med (Maywood). 2019 Jan;244(1):1-12 - PubMed
  27. J Biol Chem. 2002 Sep 20;277(38):35150-5 - PubMed
  28. Nat Rev Clin Oncol. 2017 Jul;14(7):399-416 - PubMed
  29. PLoS One. 2017 Nov 2;12(11):e0186993 - PubMed
  30. Int J Cancer. 2019 Sep 1;145(5):1358-1370 - PubMed
  31. J Biol Chem. 1994 Feb 25;269(8):6185-92 - PubMed
  32. J Biol Chem. 2001 Oct 26;276(43):39713-20 - PubMed
  33. Phytomedicine. 2019 Apr;57:377-384 - PubMed
  34. Oncogene. 2008 Oct 6;27(45):5904-12 - PubMed
  35. BMC Cancer. 2015 Apr 10;15:250 - PubMed
  36. Mol Cell Biol. 2001 Jun;21(12):3964-73 - PubMed
  37. Genes Dev. 1999 Feb 15;13(4):400-11 - PubMed
  38. Cell Cycle. 2006 Aug;5(15):1597-601 - PubMed
  39. J Biol Chem. 1999 Jul 2;274(27):19368-74 - PubMed
  40. Curr Biol. 1997 Feb 1;7(2):R94-6 - PubMed
  41. Mol Cell Biol. 1997 Dec;17(12):7328-41 - PubMed
  42. Nat Immunol. 2002 Mar;3(3):221-7 - PubMed
  43. Biomedicines. 2018 Apr 17;6(2): - PubMed
  44. FEBS Lett. 2001 Nov 23;508(3):369-74 - PubMed
  45. Int J Mol Sci. 2019 Feb 15;20(4): - PubMed
  46. Proc Natl Acad Sci U S A. 1996 Aug 20;93(17):9090-5 - PubMed
  47. Nat Med. 2007 Jan;13(1):70-7 - PubMed
  48. J Biochem Mol Biol. 2002 Jan 31;35(1):28-40 - PubMed
  49. J Biol Chem. 1992 Aug 15;267(23):16288-91 - PubMed
  50. Mol Cell Biol. 1999 Aug;19(8):5785-99 - PubMed
  51. Cell Biol Int. 1997 Feb;21(2):75-86 - PubMed
  52. Biomolecules. 2019 Jan 02;9(1): - PubMed
  53. N Engl J Med. 2005 Dec 22;353(25):2654-66 - PubMed
  54. Lancet. 2001 Feb 17;357(9255):539-45 - PubMed
  55. Nat Rev Cancer. 2016 Aug 23;16(9):582-98 - PubMed
  56. Nat Rev Dis Primers. 2015 Nov 05;1:15065 - PubMed
  57. J Biol Chem. 1998 Oct 30;273(44):28897-905 - PubMed
  58. Cell. 2002 Apr;109 Suppl:S81-96 - PubMed
  59. Annu Rev Immunol. 1998;16:225-60 - PubMed
  60. J Cell Biol. 2006 Jun 5;173(5):659-64 - PubMed
  61. Nature. 2006 May 25;441(7092):431-6 - PubMed
  62. J Biol Chem. 1995 Dec 29;270(52):31315-20 - PubMed
  63. J Exp Med. 1998 Jul 6;188(1):211-6 - PubMed
  64. Cancer Treat Res. 2006;130:67-87 - PubMed
  65. Onco Targets Ther. 2018 Apr 11;11:2063-2073 - PubMed
  66. Nutrients. 2019 Dec 01;11(12): - PubMed
  67. Mol Nutr Food Res. 2012 Mar;56(3):454-65 - PubMed
  68. Comput Struct Biotechnol J. 2018 Jul 27;16:279-287 - PubMed
  69. Pharmacol Res. 2016 Dec;114:128-143 - PubMed
  70. CA Cancer J Clin. 2018 Nov;68(6):394-424 - PubMed
  71. CA Cancer J Clin. 2020 May;70(3):145-164 - PubMed
  72. Phytomedicine. 2017 Oct 15;34:171-181 - PubMed
  73. Eur J Pharmacol. 2008 Sep 4;591(1-3):252-8 - PubMed
  74. Nature. 2004 Sep 23;431(7007):461-6 - PubMed
  75. Mol Nutr Food Res. 2013 Sep;57(9):1510-28 - PubMed
  76. Semin Cancer Biol. 2015 Dec;35 Suppl:S199-S223 - PubMed
  77. Biochem Pharmacol. 2002 Sep;64(5-6):883-8 - PubMed
  78. Gastroenterology. 2020 Jun;158(8):2072-2081 - PubMed
  79. J Biol Chem. 1995 Dec 1;270(48):28557-64 - PubMed
  80. Nutrients. 2019 Mar 26;11(3): - PubMed
  81. Nat Rev Cancer. 2009 May;9(5):361-71 - PubMed
  82. Mol Nutr Food Res. 2013 Sep;57(9):1529-42 - PubMed

Publication Types