Display options
Share it on

J Mass Spectrom. 2020 Jul 11;56(4):e4621. doi: 10.1002/jms.4621. Epub 2020 Jul 11.

In situ probing changes in fatty-acyl chain length and desaturation of lipids in cancerous areas using mass spectrometry imaging.

Journal of mass spectrometry : JMS

Lei Guo, Zhizhen Lai, Yanmin Wang, Zhili Li

Affiliations

  1. Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
  2. Department of Clinical Laboratory, Heze Municipal Hospital, Heze, China.

PMID: 32776652 DOI: 10.1002/jms.4621

Abstract

Aberrant changes in the expression levels and structure of lipids may shape tumor microenvironment. In this study, we have performed mass spectrometry imaging and profiling analysis of 63 tissues of five types of cancer, namely, breast, colorectal, esophageal, lung, and gastric cancer, using in situ liquid extraction electrosonic spray ionization mass spectrometry imaging. Alteration of fatty-acyl chain length of unsaturated phosphatidylcholines, phosphatidylinositols, and phosphatidylserines and of chain length of (un)saturated fatty acids are associated with different cancerous areas of five types of cancer. The ratios of the same fatty-acyl carbon atom lipids with one double bond difference and the ratios of the same chain-length fatty acids with one double bond difference exhibited significant differences among the cancerous areas of five types of cancer. Our data may reveal that there were different lipid metabolism networks among five types of cancer.

© 2020 John Wiley & Sons, Ltd.

Keywords: fatty acid chain elongation; fatty acid desaturation; lipid; mass spectrometry imaging

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA-Cancer J Clin. 2019;69:7-34. - PubMed
  2. Benjamin DI, Cozzo A, Ji X, et al. Ether lipid generating enzyme AGPS alters the balance of structural and signaling lipids to fuel cancer pathogenicity. Proc Natl Acad Sci U S A. 2013;110:14912-14917. - PubMed
  3. Baenke F, Peck B, Miess H, Schulze A. Hooked on fat: the role of lipid synthesis in cancer metabolism and tumour development. Dis Model Mech. 2013;6:1353-1363. - PubMed
  4. Vancorven EJ, Groenink A, Jalink K, Eichholtz T, Moolenaar WH. Lysophosphatidate-induced cell proliferation identification and dissection of signaling pathways mediated by G-proteins. Cell. 1989;59:45-54. - PubMed
  5. Lingwood D, Simons K. Lipid rafts as a membrane-organizing principle. Science. 2010;327:46-50. - PubMed
  6. Santos CR, Schulze A. Lipid metabolism in cancer. FEBS J. 2012;279:2610-2623. - PubMed
  7. Liu Y, Zuckier LS, Ghesani NV. Dominant uptake of fatty acid over glucose by prostate cells: a potential new diagnostic and therapeutic approach. Anticancer Res. 2010;30:369-374. - PubMed
  8. Rysman E, Brusselmans K, Scheys K, et al. De novo lipogenesis protects cancer cells from free radicals and chemotherapeutics by promoting membrane lipid saturation. Cancer Res. 2010;70:8117-8126. - PubMed
  9. Zouboulis CC, Jourdan E, Picardo M. Acne is an inflammatory disease and alterations of sebum composition initiate acne lesions. J Eur Acad Dermatol. 2014;28:527-532. - PubMed
  10. Li J, Condello S, Thomes-Pepin J, et al. Lipid desaturation is a metabolic marker and therapeutic target of ovarian cancer stem cells. Cell Stem Cell. 2017;20:303-314. - PubMed
  11. Abbott SK, Li H, Munoz SS, et al. Altered ceramide acyl chain length and ceramide synthase gene expression in Parkinson's disease. Mov Disord. 2014;29:518-526. - PubMed
  12. He M, Guo S, Li Z. In situ characterizing membrane lipid phenotype of breast cancer cells using mass spectrometry profiling. Sci Rep. 2015;5:e11298. - PubMed
  13. He M, Guo S, Ren J, Li Z. In situ characterizing membrane lipid phenotype of human lung cancer cell lines using mass spectrometry profiling. J Cancer. 2016;7:810-816. - PubMed
  14. Xu Y, Zhang M, Wang Q, Li Z. In situ detecting changes in membrane lipid phenotypes of macrophages cultured in different cancer microenvironments using mass spectrometry. Anal Chim Acta. 2018;1026:101-108. - PubMed
  15. Kihara A. Very long-chain fatty acids: elongation, physiology and related disorders. J Biochem. 2012;152:387-395. - PubMed
  16. Zhou D, Guo S, Zhang M, Liu Y, Chen T, Li Z. Mass spectrometry imaging of small molecules in biological tissues using graphene oxide as a matrix. Anal Chim Acta. 2017;962:52-59. - PubMed
  17. Wiseman JM, Ifa DR, Song Q, Cooks RG. Tissue imaging at atmospheric pressure using desorption electrospray ionization (DESI) mass spectrometry. Angew Chem Int ed. 2006;45:7188-7192. - PubMed
  18. Kraft ML, Klitzing HA. Imaging lipids with secondary ion mass spectrometry. Biochim Biophys Acta. 2014;1841:1108-1119. - PubMed
  19. Taylor AJ, Dexter A, Bunch J. Exploring ion suppression in mass spectrometry imaging of a heterogeneous tissue. Anal Chem. 2018;90:5637-5645. - PubMed
  20. Wu C, Dill AL, Eberlin LS, Cooks RG, Ifa DR. Mass spectrometry imaging under ambient conditions. Mass Spectrom Rev. 2013;32:218-243. - PubMed
  21. Roach PJ, Laskin J, Laskin A. Nanospray desorption electrospray ionization: an ambient method for liquid-extraction surface sampling in mass spectrometry. Analyst. 2010;135:2233-2236. - PubMed
  22. Yin R, Kyle J, Burnum-Johnson K, et al. High spatial resolution imaging of mouse pancreatic islets using nanospray desorption electrospray ionization mass spectrometry. Anal Chem. 2018;90:6548-6555. - PubMed
  23. He J, Tang F, Luo Z, et al. Air flow assisted ionization for remote sampling of ambient mass spectrometry and its application. Rapid Commun Mass Sp. 2011;25:843-850. - PubMed
  24. Sun C, Li T, Song X, et al. Spatially resolved metabolomics to discover tumor-associated metabolic alterations. Proc Natl Acad Sci U S A. 2019;116:52-57. - PubMed
  25. Hiraoka K, Nishidate K, Mori K, Asakawa D, Suzuki S. Development of probe electrospray using a solid needle. Rapid Commun Mass Sp. 2007;21:3139-3144. - PubMed
  26. Mandal MK, Yoshimura K, Chen LC, et al. Application of probe electrospray ionization mass spectrometry (PESI-MS) to clinical diagnosis: solvent effect on lipid analysis. J am Soc Mass Spectr. 2012;23:2043-2047. - PubMed
  27. Guo S, Zhou D, Zhang M, et al. Monitoring changes of docosahexaenoic acid-containing lipids during the recovery process of traumatic brain injury in rat using mass spectrometry imaging. Sci Rep. 2017;7:e5054. - PubMed
  28. Chong J, Wishart DS, Xia J. Using MetaboAnalyst 4.0 for comprehensive and integrative metabolomics data analysis. Curr Protoc Bioinformatics. 2019;6:1-128. - PubMed
  29. Santoro AL, Drummond RD, Silva IT, et al. In situ DESI-MSI lipidomic profiles of breast cancer molecular subtypes and precursor lesions. Cancer Res. 2020;80:1246-1257. - PubMed
  30. Porcari AM, Zhang J, Garza KY, et al. Multicenter study using desorption-electrospray-ionization-mass-spectrometry imaging for breast-cancer diagnosis. Anal Chem. 2018;90(19):11324-11332. - PubMed
  31. Guo S, Wang Y, Zhou D, Li Z. Significantly increased monounsaturated lipids relative to polyunsaturated lipids in six types of cancer microenvironment are observed by mass spectrometry imaging. Sci Rep. 2014;4:e5959. - PubMed
  32. Vivanco I, Sawyers CL. The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nat Rev Cancer. 2002;2:489-501. - PubMed
  33. Zhang J, Feider CL, Nagi C, et al. Detection of metastatic breast and thyroid cancer in lymph nodes by desorption electrospray ionization mass spectrometry imaging. J am Soc Mass Spectr. 2017;28:1166-1174. - PubMed
  34. Quijano C, Cao L, Fergusson MM, et al. Oncogene-induced senescence results in marked metabolic and bioenergetic alterations. Cell Cycle. 2012;11(7):1383-1392. - PubMed
  35. Hartmann D, Lucks J, Fuchs S, et al. Long chain ceramides and very long chain ceramides have opposite effects on human breast and colon cancer cell growth. Int J Biochem Cell Bio. 2012;44:620-628. - PubMed
  36. Shi C, Qiao S, Wang S, Wu T, Ji G. Recent progress of lysophosphatidylcholine acyltransferases in metabolic disease and cancer. Int J Clin Exp Med. 2018;11:8941-8953. - PubMed
  37. Gerbig S, Golf O, Balog J, et al. Analysis of colorectal adenocarcinoma tissue by desorption electrospray ionization mass spectrometric imaging. Anal Bioanal Chem. 2012;403(8):2315-2325. - PubMed
  38. Naguib A, Bencze G, Engle DD, et al. P53 mutations change phosphatidylinositol acyl chain composition. Cell Rep. 2015;10:8-19. - PubMed
  39. Joerger AC, Fersht AR. Structure-function-rescue: the diverse nature of common p53 cancer mutants. Oncogene. 2007;26:2226-2242. - PubMed
  40. Reynolds LM, Howard TD, Ruczinski I, et al. Tissue-specific impact of FADS cluster variants on FADS1 and FADS2 gene expression. Plos One. 2018;13:e0194610. - PubMed
  41. Park WJ, Kothapalli KS, Lawrence P, Tyburczy C, Brenna JT. An alternate pathway to long-chain polyunsaturates: the FADS2 gene product Δ8-desaturates 20:2n-6 and 20:3n-3. J Lipid Res. 2009;50:1195-1202. - PubMed
  42. Hishikawa D, Hashidate T, Shimizu T, Shindou H. Diversity and function of membrane glycerophospholipids generated by the remodeling pathway in mammalian cells. J Lipid Res. 2014;55:799-807. - PubMed
  43. Peck B, Schulze A. Lipid desaturation-the next step in targeting lipogenesis in cancer? FEBS J. 2016;283:2767-2778. - PubMed
  44. Numata M, Chu HW, Dakhama A, Voelker DR. Pulmonary surfactant phosphatidylglycerol inhibits respiratory syncytial virus-induced inflammation and infection. Proc Natl Acad Sci U S A. 2010;107:320-325. - PubMed

Publication Types

Grant support