Display options
Share it on

Front Vet Sci. 2020 Jul 17;7:429. doi: 10.3389/fvets.2020.00429. eCollection 2020.

Echolocating Whales and Bats Express the Motor Protein Prestin in the Inner Ear: A Potential Marker for Hearing Loss.

Frontiers in veterinary science

Maria Morell, A Wayne Vogl, Lonneke L IJsseldijk, Marina Piscitelli-Doshkov, Ling Tong, Sonja Ostertag, Marisa Ferreira, Natalia Fraija-Fernandez, Kathleen M Colegrove, Jean-Luc Puel, Stephen A Raverty, Robert E Shadwick

Affiliations

  1. Zoology Department, The University of British Columbia, Vancouver, BC, Canada.
  2. Inserm Unit 1051, Institute for Neurosciences of Montpellier, Montpellier, France.
  3. Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Büsum, Germany.
  4. Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada.
  5. Division of Pathology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands.
  6. Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA, United States.
  7. Department of Fisheries and Oceans Canada, Winnipeg, MB, Canada.
  8. Marine Animal Tissue Bank, Portuguese Wildlife Society, Estação de Campo de Quiaios, Figueira da Foz, Portugal.
  9. Centro Reabilitação Animais Marinhos, CPRAM, Ecomare, Estrada Do Porto de Pesca Costeira, Gafanha da Nazaré, Portugal.
  10. Marine Zoology Unit, Cavanilles Institute of Biodiversity and Evolutionary Biology, Science Park, University of Valencia, Valencia, Spain.
  11. Zoological Pathology Program, University of Illinois at Urbana-Champaign, Brookfield, IL, United States.
  12. Animal Health Center, Ministry of Agriculture, Abbotsford, BC, Canada.

PMID: 32851016 PMCID: PMC7396497 DOI: 10.3389/fvets.2020.00429

Abstract

Prestin is an integral membrane motor protein located in outer hair cells of the mammalian cochlea. It is responsible for electromotility and required for cochlear amplification. Although prestin works in a cycle-by-cycle mode up to frequencies of at least 79 kHz, it is not known whether or not prestin is required for the extreme high frequencies used by echolocating species. Cetaceans are known to possess a prestin coding gene. However, the expression and distribution pattern of the protein in the cetacean cochlea has not been determined, and the contribution of prestin to echolocation has not yet been resolved. Here we report the expression of the protein prestin in five species of echolocating whales and two species of echolocating bats. Positive labeling in the basolateral membrane of outer hair cells, using three anti-prestin antibodies, was found all along the cochlear spiral in echolocating species. These findings provide morphological evidence that prestin can have a role in cochlear amplification in the basolateral membrane up to 120-180 kHz. In addition, labeling of the cochlea with a combination of anti-prestin, anti-neurofilament, anti-myosin VI and/or phalloidin and DAPI will be useful for detecting potential recent cases of noise-induced hearing loss in stranded cetaceans. This study improves our understanding of the mechanisms involved in sound transduction in echolocating mammals, as well as describing an optimized methodology for detecting cases of hearing loss in stranded marine mammals.

Copyright © 2020 Morell, Vogl, IJsseldijk, Piscitelli-Doshkov, Tong, Ostertag, Ferreira, Fraija-Fernandez, Colegrove, Puel, Raverty and Shadwick.

Keywords: bat; echolocation; hair cells; immunofluorescence; inner ear; noise-induced hearing loss; prestin; whale

References

  1. Acta Otolaryngol. 1971 Feb-Mar;71(2):166-76 - PubMed
  2. J Neurochem. 2004 May;89(4):928-38 - PubMed
  3. Pflugers Arch. 2009 Feb;457(4):885-98 - PubMed
  4. Proc Natl Acad Sci U S A. 1972 Mar;69(3):657-61 - PubMed
  5. Hear Res. 2006 Aug;218(1-2):20-9 - PubMed
  6. J Mol Evol. 2011 Oct;73(3-4):109-15 - PubMed
  7. Ann Otol Rhinol Laryngol. 1974 May-Jun;83(3):294-303 - PubMed
  8. Proc Natl Acad Sci U S A. 1999 Apr 13;96(8):4420-5 - PubMed
  9. J Neurochem. 2001 Jan;76(2):472-9 - PubMed
  10. Alcohol. 2008 Nov;42(7):525-39 - PubMed
  11. J Comp Neurol. 1992 Apr 22;318(4):367-79 - PubMed
  12. Curr Biol. 2010 Jan 26;20(2):R53-4 - PubMed
  13. Proc Natl Acad Sci U S A. 2001 Mar 27;98(7):4178-83 - PubMed
  14. Neuron. 2011 Jun 23;70(6):1143-54 - PubMed
  15. Science. 2001 Jun 22;292(5525):2340-3 - PubMed
  16. Ann Otol Rhinol Laryngol. 1976 Nov-Dec;85(6 PT. 1):740-51 - PubMed
  17. J Physiol. 2004 Nov 1;560(Pt 3):821-30 - PubMed
  18. J Cell Sci. 1999 Mar;112 ( Pt 6):797-809 - PubMed
  19. Hear Res. 1991 Jun;53(2):253-68 - PubMed
  20. Hear Res. 2005 Jun;204(1-2):216-22 - PubMed
  21. Nat Rev Mol Cell Biol. 2002 Feb;3(2):104-11 - PubMed
  22. Otolaryngol Clin North Am. 1979 Aug;12(3):493-513 - PubMed
  23. J Vis Exp. 2019 Nov 6;(153): - PubMed
  24. Physiol Rev. 2008 Jan;88(1):173-210 - PubMed
  25. J Cell Sci. 2005 Jul 1;118(Pt 13):2987-96 - PubMed
  26. J Comp Physiol A. 1985 Nov;157(5):687-97 - PubMed
  27. Pflugers Arch. 1997 Jul;434(3):267-71 - PubMed
  28. Cell Motil Cytoskeleton. 1991;18(3):215-27 - PubMed
  29. J Comp Neurol. 2015 Feb 15;523(3):431-48 - PubMed
  30. Curr Biol. 2010 Jan 26;20(2):R55-6 - PubMed
  31. Nature. 2000 May 11;405(6783):149-55 - PubMed
  32. Hear Res. 2014 May;311:25-35 - PubMed
  33. Hear Res. 2003 Apr;178(1-2):27-34 - PubMed
  34. Sci Rep. 2017 Feb 06;7:41848 - PubMed
  35. Mol Biol Evol. 2014 Sep;31(9):2415-24 - PubMed
  36. Arch Otolaryngol. 1971 Oct;94(4):294-305 - PubMed
  37. Nature. 2002 Sep 19;419(6904):300-4 - PubMed
  38. J Acoust Soc Am. 2003 Feb;113(2):1130-7 - PubMed
  39. J Acoust Soc Am. 2002 Jul;112(1):334-44 - PubMed
  40. Brain Res. 2006 Jun 20;1095(1):51-8 - PubMed
  41. Proc Natl Acad Sci U S A. 1971 Dec;68(12):2908-12 - PubMed
  42. J Neurosci. 2008 Jun 18;28(25):6342-53 - PubMed
  43. Hear Res. 1991 Feb;51(2):173-83 - PubMed
  44. J Neurosci. 2006 Feb 15;26(7):2115-23 - PubMed

Publication Types