Display options
Share it on

Curr Opin Immunol. 2021 Feb;68:9-20. doi: 10.1016/j.coi.2020.08.002. Epub 2020 Sep 06.

A unifying hypothesis on the central role of reactive oxygen species in bacterial pathogenesis and host defense in C. elegans.

Current opinion in immunology

Debanjan Goswamy, Javier E Irazoqui

Affiliations

  1. Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605, United States; Immunology and Microbiology Program, University of Massachusetts Medical School, Worcester, MA 01605, United States.
  2. Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605, United States; Immunology and Microbiology Program, University of Massachusetts Medical School, Worcester, MA 01605, United States. Electronic address: [email protected].

PMID: 32898751 PMCID: PMC7925333 DOI: 10.1016/j.coi.2020.08.002

Abstract

During intestinal infection, microbes induce ROS by various mechanisms in C. elegans. ROS can have beneficial roles, acting as antimicrobials and as signaling molecules that activate cytoprotective pathways. Failure to maintain appropriate levels of ROS causes oxidative stress and cellular damage. This review uses the Damage Response Framework to interpret several recent observations on the relationships between infection, host response, and host damage, with a focus on mechanisms mediated by ROS. We propose a unifying hypothesis that ROS drive a collapse in proteostasis in infected C. elegans, which results in death during unresolved infection. Because the signaling pathways highlighted here are conserved in mammals, the mentioned and future studies can provide new tools of hypothesis generation in human health and disease.

Copyright © 2020 Elsevier Ltd. All rights reserved.

References

  1. Swiss Med Wkly. 2012 Aug 17;142:w13659 - PubMed
  2. Aging Cell. 2017 Aug;16(4):615-623 - PubMed
  3. Cell Mol Neurobiol. 2015 Jul;35(5):615-21 - PubMed
  4. Cell Host Microbe. 2012 Apr 19;11(4):375-86 - PubMed
  5. Redox Biol. 2014 Jan 18;2:333-47 - PubMed
  6. Trends Ecol Evol. 2005 Dec;20(12):665-9 - PubMed
  7. Science. 2015 Dec 11;350(6266):1375-1378 - PubMed
  8. Redox Biol. 2017 Apr;11:708-714 - PubMed
  9. Proc Natl Acad Sci U S A. 2001 Sep 11;98(19):10892-7 - PubMed
  10. Aging Cell. 2009 Sep;8(5):524-41 - PubMed
  11. Curr Biol. 2010 Dec 7;20(23):2131-6 - PubMed
  12. Immunity. 2018 May 15;48(5):963-978.e3 - PubMed
  13. Dis Model Mech. 2008 Nov-Dec;1(4-5):205-8 - PubMed
  14. Dev Cell. 2019 Apr 8;49(1):89-99.e4 - PubMed
  15. Proc Natl Acad Sci U S A. 2015 Feb 10;112(6):1821-6 - PubMed
  16. Cell Res. 2018 Mar;28(3):281-295 - PubMed
  17. Proc Natl Acad Sci U S A. 2016 Jul 5;113(27):E3941-9 - PubMed
  18. Cell. 2014 Oct 9;159(2):267-80 - PubMed
  19. Mol Cells. 2017 Feb;40(2):90-99 - PubMed
  20. PLoS Biol. 2005 Feb;3(2):e53 - PubMed
  21. Virulence. 2018 Dec 31;9(1):683-699 - PubMed
  22. Curr Opin Neurobiol. 2020 Jun;62:34-40 - PubMed
  23. PLoS One. 2015 Apr 24;10(4):e0124091 - PubMed
  24. Oxid Med Cell Longev. 2016;2016:4350965 - PubMed
  25. Infect Immun. 2002 Sep;70(9):5202-7 - PubMed
  26. Virulence. 2018 Dec 31;9(1):804-817 - PubMed
  27. Mol Cell. 2013 Feb 21;49(4):730-42 - PubMed
  28. Biol Direct. 2016 Nov 3;11(1):58 - PubMed
  29. Curr Top Dev Biol. 2018;127:1-21 - PubMed
  30. Annu Rev Biochem. 2012;81:203-29 - PubMed
  31. PLoS One. 2012;7(9):e45417 - PubMed
  32. Proc Natl Acad Sci U S A. 2014 Oct 21;111(42):E4458-67 - PubMed
  33. Psychosom Med. 2010 May;72(4):365-9 - PubMed
  34. Biochem J. 2016 Apr 1;473(7):805-25 - PubMed
  35. BMB Rep. 2018 Jun;51(6):274-279 - PubMed
  36. Mol Cell. 2016 Aug 18;63(4):553-566 - PubMed
  37. Methods Mol Biol. 2008;415:403-27 - PubMed
  38. Trends Immunol. 2010 Jul;31(7):278-87 - PubMed
  39. Exp Gerontol. 2001 Sep;36(9):1495-502 - PubMed
  40. PLoS Pathog. 2013 Jan;9(1):e1003101 - PubMed
  41. Proc Natl Acad Sci U S A. 1999 Jan 19;96(2):715-20 - PubMed
  42. Proc Natl Acad Sci U S A. 1999 Dec 21;96(26):15202-7 - PubMed
  43. Int J Med Microbiol. 2004 Apr;293(7-8):599-607 - PubMed
  44. Trends Cell Biol. 2009 Feb;19(2):52-61 - PubMed
  45. Sci Rep. 2017 Aug 7;7(1):7408 - PubMed
  46. J Biol Chem. 2008 Jan 4;283(1):194-201 - PubMed
  47. Int J Mol Sci. 2019 Aug 09;20(16): - PubMed
  48. Autophagy. 2018;14(2):233-242 - PubMed
  49. Int Rev Immunol. 2013 Jun;32(3):249-70 - PubMed
  50. PLoS One. 2017 Jun 20;12(6):e0177432 - PubMed
  51. Genes Dev. 2005 Oct 1;19(19):2278-83 - PubMed
  52. Sci Signal. 2017 Oct 17;10(501): - PubMed
  53. Trends Cell Biol. 2010 Jan;20(1):45-51 - PubMed
  54. Free Radic Biol Med. 2015 Nov;88(Pt B):290-301 - PubMed
  55. Nature. 2015 May 28;521(7553):525-8 - PubMed
  56. J Leukoc Biol. 2018 Jan;103(1):35-51 - PubMed
  57. Cell Death Dis. 2014 Jan 09;5:e984 - PubMed
  58. Nat Immunol. 2010 Feb;11(2):136-40 - PubMed
  59. Mol Biol Cell. 2004 Feb;15(2):657-64 - PubMed
  60. Science. 2003 Jun 20;300(5627):1921 - PubMed
  61. Cell Tissue Res. 2019 Sep;377(3):383-396 - PubMed
  62. Proc Natl Acad Sci U S A. 2019 Oct 29;116(44):22322-22330 - PubMed
  63. Immunity. 2014 Jun 19;40(6):896-909 - PubMed
  64. Biochim Biophys Acta. 2016 Aug;1857(8):1116-1126 - PubMed
  65. PLoS Pathog. 2014 Jun 19;10(6):e1004200 - PubMed
  66. Infect Immun. 2020 Jul 21;88(8): - PubMed
  67. Philos Trans R Soc Lond B Biol Sci. 2016 May 26;371(1695): - PubMed
  68. PLoS Pathog. 2013;9(10):e1003660 - PubMed
  69. Nat Commun. 2017 Feb 15;8:14337 - PubMed
  70. Cell Host Microbe. 2012 Apr 19;11(4):364-74 - PubMed
  71. Proc Natl Acad Sci U S A. 2006 Aug 29;103(35):13092-7 - PubMed
  72. G3 (Bethesda). 2018 Dec 10;8(12):3857-3863 - PubMed
  73. Autophagy. 2017 Feb;13(2):371-385 - PubMed
  74. Science. 2011 Nov 25;334(6059):1081-6 - PubMed
  75. Aging Cell. 2006 Dec;5(6):487-94 - PubMed
  76. Proc Natl Acad Sci U S A. 2014 Aug 26;111(34):12480-5 - PubMed
  77. J Exp Biol. 2003 Jul;206(Pt 14):2441-57 - PubMed
  78. PLoS One. 2011;6(12):e29122 - PubMed
  79. Curr Biol. 2016 Aug 8;26(15):2037-2043 - PubMed
  80. Nature. 2010 Feb 25;463(7284):1092-5 - PubMed
  81. Nature. 2012 Sep 13;489(7415):242-9 - PubMed
  82. Infect Immun. 2009 Nov;77(11):4983-9 - PubMed
  83. WormBook. 2018 Aug 14;2018:1-35 - PubMed
  84. Nature. 2014 Dec 18;516(7531):414-7 - PubMed
  85. Int J Antimicrob Agents. 2018 Mar;51(3):299-303 - PubMed
  86. Elife. 2019 Apr 11;8: - PubMed
  87. Science. 2012 Aug 3;337(6094):587-90 - PubMed
  88. Genetics. 2007 Jul;176(3):1567-77 - PubMed
  89. Nat Rev Microbiol. 2003 Oct;1(1):17-24 - PubMed
  90. Nat Rev Immunol. 2004 Mar;4(3):181-9 - PubMed
  91. Nat Commun. 2013;4:2267 - PubMed
  92. Cell. 2013 May 9;153(4):797-811 - PubMed
  93. PLoS Pathog. 2010 Jul 01;6:e1000982 - PubMed
  94. Oxid Med Cell Longev. 2012;2012:608478 - PubMed
  95. PLoS Pathog. 2011 Dec;7(12):e1002453 - PubMed
  96. Cell. 1999 Jan 8;96(1):47-56 - PubMed

Publication Types

Grant support