Display options
Share it on

Cancers (Basel). 2020 Sep 21;12(9). doi: 10.3390/cancers12092708.

Computer Extracted Features from Initial H&E Tissue Biopsies Predict Disease Progression for Prostate Cancer Patients on Active Surveillance.

Cancers

Sacheth Chandramouli, Patrick Leo, George Lee, Robin Elliott, Christine Davis, Guangjing Zhu, Pingfu Fu, Jonathan I Epstein, Robert Veltri, Anant Madabhushi

Affiliations

  1. Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
  2. Department of Anatomic Pathology, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA.
  3. Department of Surgical Pathology, The Johns Hopkins Hospital, 1800 Orleans St, Baltimore, MD 21287, USA.
  4. Department of Population and Quantitative Health Sciences, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA.
  5. Department of Urology and Oncology, The Johns Hopkins University, Baltimore, MD 21287, USA.
  6. Research Health Scientist, Louis Stokes Cleveland Veterans Administration Medical Center, 10701 East Blvd, Cleveland, OH 44106, USA.

PMID: 32967377 PMCID: PMC7563653 DOI: 10.3390/cancers12092708

Abstract

In this work, we assessed the ability of computerized features of nuclear morphology from diagnostic biopsy images to predict prostate cancer (CaP) progression in active surveillance (AS) patients. Improved risk characterization of AS patients could reduce over-testing of low-risk patients while directing high-risk patients to therapy. A total of 191 (125 progressors, 66 non-progressors) AS patients from a single site were identified using The Johns Hopkins University's (JHU) AS-eligibility criteria. Progression was determined by pathologists at JHU. 30 progressors and 30 non-progressors were randomly selected to create the training cohort D

Keywords: active surveillance; machine learning; pathology; prostate cancer

References

  1. IEEE Trans Med Imaging. 2015 Jan;34(1):284-97 - PubMed
  2. Lancet Oncol. 2020 Feb;21(2):222-232 - PubMed
  3. IEEE Trans Med Imaging. 2007 Oct;26(10):1366-78 - PubMed
  4. Cytometry B Clin Cytom. 2007 Jul;72(4):227-40 - PubMed
  5. Curr Opin Urol. 2014 May;24(3):288-92 - PubMed
  6. Urology. 2010 Feb;75(2):407-13 - PubMed
  7. BJU Int. 2014 Dec;114(6b):E18-E24 - PubMed
  8. Curr Opin Urol. 2015 May;25(3):232-7 - PubMed
  9. Clin Cancer Res. 2013 May 1;19(9):2442-50 - PubMed
  10. Eur Urol. 2017 Apr;71(4):618-629 - PubMed
  11. Clin Oncol (R Coll Radiol). 1997;9(4):222-5 - PubMed
  12. J Clin Oncol. 2011 Jul 10;29(20):2795-800 - PubMed
  13. Urology. 2011 Mar;77(3):763.e1-6 - PubMed
  14. IEEE Rev Biomed Eng. 2009;2:147-71 - PubMed
  15. Eur Urol. 2010 Dec;58(6):831-5 - PubMed
  16. J Clin Oncol. 2011 Sep 20;29(27):3669-76 - PubMed
  17. Prostate Cancer Prostatic Dis. 2017 Sep;20(3):271-275 - PubMed
  18. BJU Int. 2016 Jan;117(1):12-3 - PubMed
  19. Urology. 2007 Mar;69(3):495-9 - PubMed
  20. Med Image Comput Comput Assist Interv. 2013;16(Pt 1):412-9 - PubMed
  21. Lab Invest. 2018 Nov;98(11):1438-1448 - PubMed
  22. Open Forum Infect Dis. 2017 Jan 13;4(1):ofw265 - PubMed
  23. Cancer Epidemiol Biomarkers Prev. 2008 Jan;17(1):102-10 - PubMed
  24. Keio J Med. 2003 Jun;52(2):86-91 - PubMed
  25. Lancet Oncol. 2020 Feb;21(2):233-241 - PubMed
  26. Eur Urol. 2018 Sep;74(3):357-368 - PubMed
  27. Eur Urol. 2013 Apr;63(4):597-603 - PubMed
  28. J Urol. 2012 Oct;188(4):1131-6 - PubMed
  29. Nat Rev Urol. 2016 Mar;13(3):151-67 - PubMed
  30. PLoS One. 2014 May 29;9(5):e97954 - PubMed
  31. Nat Rev Clin Oncol. 2010 Jul;7(7):394-400 - PubMed
  32. Transl Androl Urol. 2018 Feb;7(1):155-159 - PubMed
  33. Prostate. 1982;3(4):321-32 - PubMed
  34. Eur Urol. 2018 Aug;74(2):211-217 - PubMed
  35. Med Image Comput Comput Assist Interv. 2013;16(Pt 3):396-403 - PubMed
  36. Prostate. 2010 Sep 1;70(12):1333-9 - PubMed

Publication Types

Grant support