Display options
Share it on

Am J Hypertens. 2021 May 22;34(5):511-520. doi: 10.1093/ajh/hpaa184.

The Association of Orthostatic Hypotension With Ambulatory Blood Pressure Phenotypes in SPRINT.

American journal of hypertension

Lama Ghazi, Paul E Drawz, Nicholas M Pajewski, Stephen P Juraschek

Affiliations

  1. Yale University, School of Medicine, Clinical and Translational Research Accelerator, New Haven, Connecticut, USA.
  2. University of Minnesota Medical School, Department of Medicine, Division of Nephrology and Hypertension, Minneapolis, Minnesota, USA.
  3. Wake Forest School of Medicine, Department of Biostatistics and Data Science, Winston-Salem, North Carolina, USA.
  4. Beth Israel Deaconess Medical Center, Harvard Medical School, Department of Medicine, Division of General Medicine, Boston, Massachusetts, USA.

PMID: 33186448 PMCID: PMC8140655 DOI: 10.1093/ajh/hpaa184

Abstract

BACKGROUND: Clinic blood pressure (BP) when measured in the seated position, can miss meaningful BP phenotypes, including low ambulatory BP (white coat effects [WCE]) or high supine BP (nocturnal non-dipping). Orthostatic hypotension (OH) measured using both seated (or supine) and standing BP, could identify phenotypes poorly captured by seated clinic BP alone.

METHODS: We examined the association of OH with WCE and night-to-daytime systolic BP (SBP) in a subpopulation of SPRINT, a randomized trial testing the effects of intensive or standard (<120 vs. <140 mm Hg) SBP treatment strategies in adults at increased risk of cardiovascular disease. OH was assessed during follow-up (6, 12, and 24 months) and defined as a decrease in mean seated SBP ≥20 or diastolic BP ≥10 mm Hg after 1 min of standing. WCE, based on 24-hour ambulatory BP monitoring performed at 27 months, was defined as the difference between 27-month seated clinic and daytime ambulatory BP ≥20/≥10 mm Hg. Reverse dipping was defined as a ratio of night-to-daytime SBP >1.

RESULTS: Of 897 adults (mean age 71.5±9.5 years, 29% female, 28% black), 128 had OH at least once. Among those with OH, 15% had WCE (vs. 7% without OH). Moreover, 25% of those with OH demonstrated a non-dipping pattern (vs. 14% without OH). OH was positively associated with both WCE (OR=2.24; 95%CI: 1.28, 4.27) and reverse dipping (OR=2.29; 95% CI: 1.31, 3.99).

CONCLUSIONS: The identification of OH in clinic was associated with two BP phenotypes often missed with traditional seated BP assessments. Further studies on mechanisms of these relationships are needed.

CLINICAL TRIALS REGISTRATION: Trial Number NCT03569020.

© American Journal of Hypertension, Ltd 2020. All rights reserved. For Permissions, please email: [email protected].

Keywords: ambulatory blood pressure monitoring; blood pressure; hypertension; nocturnal dipping status; orthostatic hypotension; white coat effects

References

  1. Ann Intern Med. 2021 Jan;174(1):58-68 - PubMed
  2. Clin J Am Soc Nephrol. 2016 Apr 7;11(4):642-52 - PubMed
  3. Clin Trials. 2014 Oct;11(5):532-46 - PubMed
  4. J Hypertens. 2014 Jul;32(7):1359-66 - PubMed
  5. Hypertens Res. 2019 Oct;42(10):1552-1560 - PubMed
  6. J Am Coll Cardiol. 2019 Jan 29;73(3):317-335 - PubMed
  7. Clin Auton Res. 2011 Apr;21(2):69-72 - PubMed
  8. Am J Hypertens. 2008 Feb;21(2):153-8 - PubMed
  9. Clin Auton Res. 2016 Dec;26(6):433-439 - PubMed
  10. J Am Geriatr Soc. 2008 Oct;56(10):1816-20 - PubMed
  11. JAMA. 2019 Aug 6;322(5):409-420 - PubMed
  12. Medicine (Baltimore). 2017 Aug;96(34):e7692 - PubMed
  13. Can J Cardiol. 2016 May;32(5):569-88 - PubMed
  14. Clin J Am Soc Nephrol. 2012 Nov;7(11):1770-6 - PubMed
  15. J Clin Hypertens (Greenwich). 2018 Jul;20(7):1112-1115 - PubMed
  16. Eur J Epidemiol. 2011 Jul;26(7):537-46 - PubMed
  17. Hypertension. 2018 May;71(5):848-857 - PubMed
  18. Am J Hypertens. 2000 Jun;13(6 Pt 1):571-8 - PubMed
  19. J Am Coll Cardiol. 2018 Jan 16;71(2):109-118 - PubMed
  20. Am J Hypertens. 2005 Jan;18(1):104-15 - PubMed
  21. J Am Soc Hypertens. 2016 Nov;10(11):847-856 - PubMed
  22. J Hum Hypertens. 2015 Oct;29(10):599-603 - PubMed
  23. J Hypertens. 2006 Feb;24(2):339-44 - PubMed
  24. J Hypertens. 1991 Jun;9(6):573-4 - PubMed
  25. Clin Auton Res. 1996 Apr;6(2):125-6 - PubMed
  26. JAMA. 2016 Jun 28;315(24):2673-82 - PubMed
  27. Hypertension. 2020 Mar;75(3):660-667 - PubMed
  28. Blood Press Monit. 2007 Aug;12(4):233-42 - PubMed
  29. JAMA Intern Med. 2020 Dec 1;180(12):1655-1663 - PubMed
  30. Hypertension. 1998 Sep;32(3):417-23 - PubMed
  31. Hypertension. 1998 Apr;31(4):1021-9 - PubMed
  32. J Am Heart Assoc. 2019 Jul 16;8(14):e011706 - PubMed
  33. Circulation. 2005 Feb 8;111(5):697-716 - PubMed
  34. J Am Heart Assoc. 2018 May 7;7(10): - PubMed
  35. JAMA Intern Med. 2017 Sep 1;177(9):1316-1323 - PubMed
  36. Hypertension. 2018 Jun;71(6):e13-e115 - PubMed
  37. J Hypertens. 2016 Feb;34(2):351-8 - PubMed
  38. Eur Heart J. 2010 Jan;31(1):85-91 - PubMed
  39. Am J Kidney Dis. 2020 Mar;75(3):426-434 - PubMed
  40. J Am Coll Cardiol. 2016 Nov 8;68(19):2033-2043 - PubMed
  41. Can J Neurol Sci. 2016 May;43(3):390-7 - PubMed
  42. Hypertension. 1992 Jun;19(6 Pt 1):508-19 - PubMed
  43. Blood Press Monit. 2002 Dec;7(6):293-300 - PubMed
  44. Blood Press Monit. 2002 Aug;7(4):237-41 - PubMed
  45. J Clin Hypertens (Greenwich). 2016 Feb;18(2):139-45 - PubMed
  46. Neurology. 2020 Oct 6;95(14):e1941-e1950 - PubMed
  47. Eur J Neurol. 2017 Jan;24(1):90-97 - PubMed
  48. Hypertension. 2017 Jan;69(1):42-50 - PubMed
  49. N Engl J Med. 2015 Nov 26;373(22):2103-16 - PubMed
  50. Am J Hypertens. 2012 Feb;25(2):159-64 - PubMed

Publication Types

Grant support