Display options
Share it on

NPJ Syst Biol Appl. 2020 Nov 27;6(1):39. doi: 10.1038/s41540-020-00155-5.

Environmental flexibility does not explain metabolic robustness.

NPJ systems biology and applications

Julian Libiseller-Egger, Ben Coltman, Matthias P Gerstl, Jürgen Zanghellini

Affiliations

  1. Austrian Centre of Industrial Biotechnology, 1190, Vienna, Austria.
  2. University of Natural Resources and Life Sciences, 1190, Vienna, Austria.
  3. Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK.
  4. Department of Biotechnology, University of Natural Resources and Life Sciences, 1190, Vienna, Austria.
  5. Austrian Centre of Industrial Biotechnology, 1190, Vienna, Austria. [email protected].
  6. Department of Analytical Chemistry, University of Vienna, 1090, Vienna, Austria. [email protected].

PMID: 33247119 PMCID: PMC7695710 DOI: 10.1038/s41540-020-00155-5

Abstract

Cells show remarkable resilience against genetic and environmental perturbations. However, its evolutionary origin remains obscure. In order to leverage methods of systems biology for examining cellular robustness, a computationally accessible way of quantification is needed. Here, we present an unbiased metric of structural robustness in genome-scale metabolic models based on concepts prevalent in reliability engineering and fault analysis. The probability of failure (PoF) is defined as the (weighted) portion of all possible combinations of loss-of-function mutations that disable network functionality. It can be exactly determined if all essential reactions, synthetic lethal pairs of reactions, synthetic lethal triplets of reactions etc. are known. In theory, these minimal cut sets (MCSs) can be calculated for any network, but for large models the problem remains computationally intractable. Herein, we demonstrate that even at the genome scale only the lowest-cardinality MCSs are required to efficiently approximate the PoF with reasonable accuracy. Building on an improved theoretical understanding, we analysed the robustness of 489 E. coli, Shigella, Salmonella, and fungal genome-scale metabolic models (GSMMs). In contrast to the popular "congruence theory", which explains the origin of genetic robustness as a byproduct of selection for environmental flexibility, we found no correlation between network robustness and the diversity of growth-supporting environments. On the contrary, our analysis indicates that amino acid synthesis rather than carbon metabolism dominates metabolic robustness.

References

  1. Nucleic Acids Res. 2020 Jan 8;48(D1):D407-D415 - PubMed
  2. PLoS Comput Biol. 2015 Mar 23;11(3):e1004055 - PubMed
  3. DNA Repair (Amst). 2014 Dec;24:73-79 - PubMed
  4. PLoS Comput Biol. 2017 Apr 13;13(4):e1005409 - PubMed
  5. PLoS Comput Biol. 2014 Jan;10(1):e1003378 - PubMed
  6. Biotechnol Biofuels. 2016 Nov 21;9:252 - PubMed
  7. Bioinformatics. 2016 Mar 1;32(5):730-7 - PubMed
  8. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7160-4 - PubMed
  9. BMC Syst Biol. 2013 Aug 08;7:74 - PubMed
  10. Nucleic Acids Res. 2014 Jan;42(Database issue):D574-80 - PubMed
  11. Proc Natl Acad Sci U S A. 2002 Aug 6;99(16):10528-32 - PubMed
  12. J Integr Bioinform. 2018 Mar 9;15(1): - PubMed
  13. PLoS Genet. 2007 Jun;3(6):e93 - PubMed
  14. J Theor Biol. 2011 Feb 7;270(1):63-9 - PubMed
  15. PLoS One. 2012;7(6):e39903 - PubMed
  16. Nature. 2001 Oct 25;413(6858):852-6 - PubMed
  17. Science. 2010 Jan 22;327(5964):425-31 - PubMed
  18. Evolution. 1997 Apr;51(2):329-347 - PubMed
  19. Evolution. 2003 Sep;57(9):1959-72 - PubMed
  20. EcoSal Plus. 2010 Sep;4(1): - PubMed
  21. Nucleic Acids Res. 2020 Jan 8;48(D1):D402-D406 - PubMed
  22. Nature. 2003 Jul 31;424(6948):549-52 - PubMed
  23. Nat Commun. 2018 Sep 14;9(1):3771 - PubMed
  24. Bioinformatics. 2004 Jan 22;20(2):226-34 - PubMed
  25. Mol Syst Biol. 2007;3:137 - PubMed
  26. Mol Microbiol. 2004 Mar;51(6):1729-44 - PubMed
  27. Bioinformatics. 2019 Feb 1;35(3):535-537 - PubMed
  28. J Theor Biol. 2008 Jun 7;252(3):433-41 - PubMed
  29. Sci Rep. 2019 Sep 10;9(1):12949 - PubMed
  30. Nat Rev Genet. 2004 Nov;5(11):826-37 - PubMed
  31. Nat Rev Genet. 2015 Aug;16(8):483-96 - PubMed
  32. Cell. 2004 Sep 17;118(6):675-85 - PubMed
  33. BMC Bioinformatics. 2004 Nov 04;5:175 - PubMed
  34. Proc Natl Acad Sci U S A. 2013 Dec 10;110(50):20338-43 - PubMed
  35. Nat Rev Microbiol. 2012 Feb 27;10(4):291-305 - PubMed
  36. Mol Syst Biol. 2011 Oct 11;7:535 - PubMed
  37. Bull Math Biol. 2001 Jul;63(4):715-30 - PubMed
  38. Nucleic Acids Res. 2016 Jan 4;44(D1):D515-22 - PubMed
  39. Proc Natl Acad Sci U S A. 2002 Nov 12;99(23):15112-7 - PubMed
  40. Nucleic Acids Res. 2013 Apr;41(8):4549-64 - PubMed
  41. G3 (Bethesda). 2011 Aug 1;1(3):183-186 - PubMed
  42. Nature. 1996 Jun 20;381(6584):694-6 - PubMed
  43. Bioinformatics. 2012 Feb 1;28(3):381-7 - PubMed
  44. Nat Genet. 2002 Sep;32(1):191-4 - PubMed
  45. Science. 1999 Aug 6;285(5429):901-6 - PubMed
  46. PLoS Comput Biol. 2020 Jul 27;16(7):e1008110 - PubMed
  47. Bioinformatics. 2009 Dec 1;25(23):3158-65 - PubMed
  48. J Mol Evol. 1987;26(1-2):74-86 - PubMed
  49. Nat Biotechnol. 2000 Mar;18(3):326-32 - PubMed
  50. Metab Eng. 2003 Oct;5(4):264-76 - PubMed
  51. Syst Biol (Stevenage). 2004 Jun;1(1):114-20 - PubMed
  52. Nucleic Acids Res. 2000 Jan 1;28(1):27-30 - PubMed
  53. Biosystems. 2011 Oct;106(1):1-8 - PubMed
  54. Mol Biol Evol. 2013 Jun;30(6):1302-14 - PubMed
  55. Nucleic Acids Res. 2015 Jan;43(Database issue):D542-8 - PubMed
  56. Trends Biotechnol. 2004 Sep;22(9):446-50 - PubMed
  57. Mutat Res. 2003 Jan 28;522(1-2):3-11 - PubMed
  58. Nature. 2009 Oct 29;461(7268):1243-7 - PubMed
  59. J Exp Zool. 2000 Oct 15;288(3):242-83 - PubMed
  60. FEMS Yeast Res. 2012 Nov;12(7):796-808 - PubMed
  61. Science. 2010 Mar 12;327(5971):1389-91 - PubMed
  62. Biotechnol J. 2013 Sep;8(9):1009-16 - PubMed
  63. Mol Biol Evol. 2016 May;33(5):1164-76 - PubMed
  64. Metab Eng. 2018 May;47:153-169 - PubMed

MeSH terms

Publication Types