Display options
Share it on

Front Microbiol. 2020 Nov 12;11:596626. doi: 10.3389/fmicb.2020.596626. eCollection 2020.

High-Quality Genome-Scale Models From Error-Prone, Long-Read Assemblies.

Frontiers in microbiology

Jared T Broddrick, Richard Szubin, Charles J Norsigian, Jonathan M Monk, Bernhard O Palsson, Mary N Parenteau

Affiliations

  1. Exobiology Branch, Space Science and Astrobiology Division, NASA Ames Research Center, Moffett Field, CA, United States.
  2. Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States.

PMID: 33281796 PMCID: PMC7688782 DOI: 10.3389/fmicb.2020.596626

Abstract

Advances in nanopore-based sequencing techniques have enabled rapid characterization of genomes and transcriptomes. An emerging application of this sequencing technology is point-of-care characterization of pathogenic bacteria. However, genome assessments alone are unable to provide a complete understanding of the pathogenic phenotype. Genome-scale metabolic reconstruction and analysis is a bottom-up Systems Biology technique that has elucidated the phenotypic nuances of antimicrobial resistant (AMR) bacteria and other human pathogens. Combining these genome-scale models (GEMs) with point-of-care nanopore sequencing is a promising strategy for combating the emerging health challenge of AMR pathogens. However, the sequencing errors inherent to the nanopore technique may negatively affect the quality, and therefore the utility, of GEMs reconstructed from nanopore assemblies. Here we describe and validate a workflow for rapid construction of GEMs from nanopore (MinION) derived assemblies. Benchmarking the pipeline against a high-quality reference GEM of

Copyright © 2020 Broddrick, Szubin, Norsigian, Monk, Palsson and Parenteau.

Keywords: MinION long-read sequencing; MinION nanopore device®; antimicrobial resistance (AMR); constraint-based model; metabolic model reconstruction; nanopore sequencing

References

  1. FEMS Microbiol Rev. 2014 Jul;38(4):698-719 - PubMed
  2. Bioinformatics. 2009 Jun 1;25(11):1422-3 - PubMed
  3. J Clin Microbiol. 2019 Jan 30;57(2): - PubMed
  4. Bioinformatics. 2016 Jul 15;32(14):2103-10 - PubMed
  5. PLoS Comput Biol. 2019 Jan 9;15(1):e1006644 - PubMed
  6. Microbiome. 2019 Apr 16;7(1):61 - PubMed
  7. Environ Microbiol. 2020 Jan;22(1):255-269 - PubMed
  8. Nucleic Acids Res. 2020 Jan 8;48(D1):D402-D406 - PubMed
  9. Nat Protoc. 2020 Jan;15(1):1-14 - PubMed
  10. Glycobiology. 2014 Jun;24(6):554-63 - PubMed
  11. Nucleic Acids Res. 2019 Jan 8;47(D1):D590-D595 - PubMed
  12. J Bacteriol. 1988 Aug;170(8):3769-73 - PubMed
  13. Genome Biol. 2004;5(2):R12 - PubMed
  14. Appl Microbiol Biotechnol. 2013 Oct;97(19):8729-39 - PubMed
  15. Sci Rep. 2019 Sep 18;9(1):13501 - PubMed
  16. Microbiology (Reading). 2016 Jul;162(7):1253-1264 - PubMed
  17. Front Genet. 2018 Apr 10;9:121 - PubMed
  18. F1000Res. 2019 Dec 23;8:2138 - PubMed
  19. Front Microbiol. 2018 Jun 29;9:1437 - PubMed
  20. Nat Commun. 2018 Sep 14;9(1):3771 - PubMed
  21. Genome Res. 2017 May;27(5):737-746 - PubMed
  22. J Bacteriol. 2001 Oct;183(19):5639-44 - PubMed
  23. Front Public Health. 2019 Sep 04;7:242 - PubMed
  24. Nat Biotechnol. 2019 May;37(5):540-546 - PubMed
  25. Nucleic Acids Res. 2019 Jan 8;47(D1):D506-D515 - PubMed
  26. J Clin Microbiol. 2019 May 24;57(6): - PubMed
  27. Nucleic Acids Res. 2019 Jul 2;47(W1):W256-W259 - PubMed
  28. Genomics Proteomics Bioinformatics. 2016 Oct;14(5):265-279 - PubMed
  29. Nat Microbiol. 2020 Mar;5(3):430-442 - PubMed
  30. Bioinformatics. 2019 Oct 15;35(20):4162-4164 - PubMed
  31. Proc Natl Acad Sci U S A. 2013 Dec 10;110(50):20338-43 - PubMed
  32. Antimicrob Agents Chemother. 1991 Sep;35(9):1840-8 - PubMed
  33. Biomed J. 2016 Feb;39(1):14-23 - PubMed
  34. PLoS Comput Biol. 2011 Oct;7(10):e1002195 - PubMed
  35. FEMS Microbiol Rev. 2018 Nov 1;42(6):781-804 - PubMed
  36. Sci Rep. 2017 Dec 21;7(1):18022 - PubMed
  37. Bioinformatics. 2018 Aug 1;34(15):2666-2669 - PubMed
  38. J Exp Med. 2004 Mar 1;199(5):687-95 - PubMed
  39. Nucleic Acids Res. 2016 Jan 4;44(D1):D515-22 - PubMed
  40. Front Genet. 2020 Mar 03;11:116 - PubMed
  41. J Biomol Tech. 2017 Apr;28(1):2-7 - PubMed
  42. PeerJ. 2017 Mar 8;5:e3035 - PubMed
  43. Nat Methods. 2015 Jan;12(1):59-60 - PubMed
  44. Bioinformatics. 2009 Aug 1;25(15):1972-3 - PubMed
  45. Mol Syst Biol. 2017 Mar 6;13(3):917 - PubMed
  46. Nat Biotechnol. 2010 Sep;28(9):977-82 - PubMed
  47. PLoS One. 2010 Mar 10;5(3):e9490 - PubMed
  48. Proc Natl Acad Sci U S A. 2015 Sep 8;112(36):11341-6 - PubMed
  49. Annu Rev Biochem. 2015;84:577-601 - PubMed
  50. BMC Bioinformatics. 2010 Mar 08;11:119 - PubMed
  51. Nucleic Acids Res. 2000 Jan 1;28(1):27-30 - PubMed
  52. J Biol Chem. 2007 Sep 28;282(39):28791-9 - PubMed
  53. Cell. 2015 May 21;161(5):971-987 - PubMed
  54. Sci Data. 2019 Nov 26;6(1):285 - PubMed
  55. J Biol Chem. 2009 Jan 9;284(2):1145-54 - PubMed
  56. Nucleic Acids Res. 2018 Sep 6;46(15):7542-7553 - PubMed
  57. Front Cell Infect Microbiol. 2019 May 24;9:161 - PubMed
  58. Nat Biotechnol. 2017 Oct 11;35(10):904-908 - PubMed
  59. Bioinformatics. 2014 Jul 15;30(14):2068-9 - PubMed
  60. BMC Bioinformatics. 2009 Dec 15;10:421 - PubMed
  61. Nucleic Acids Res. 2004 Mar 19;32(5):1792-7 - PubMed
  62. Microbiol Resour Announc. 2019 Nov 21;8(47): - PubMed
  63. BMC Syst Biol. 2013 Aug 08;7:74 - PubMed

Publication Types

Grant support