Display options
Share it on

Curr Genet Med Rep. 2019 Mar;7(1):30-40. doi: 10.1007/s40142-019-0159-z. Epub 2019 Feb 14.

GWAS and Beyond: Using Omics Approaches to Interpret SNP Associations.

Current genetic medicine reports

Hung-Hsin Chen, Lauren E Petty, William Bush, Adam C Naj, Jennifer E Below

Affiliations

  1. Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA.
  2. Institute for Computational Biology, Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
  3. Department of Biostatistics, Epidemiology, and Informatics; Department of Pathology and Laboratory Medicine; Center for Clinical Epidemiology and Biostatistics; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

PMID: 33312764 PMCID: PMC7731888 DOI: 10.1007/s40142-019-0159-z

Abstract

PURPOSE OF REVIEW: Neurodegenerative diseases, neuropsychiatric disorders, and related traits have highly complex etiologies but are also highly heritable and identifying the causal genes and biological pathways underlying these traits may advance the development of treatments and preventive strategies. While many genome-wide association studies (GWAS) have successfully identified variants contributing to polygenic neurodegenerative and neuropsychiatric phenotypes including Alzheimer's disease (AD), schizophrenia (SCZ), and bipolar disorder (BPD) amongst others, interpreting the biological roles of significantly-associated variants in the genetic architecture of these traits remains a significant challenge. Here we review several 'omics' approaches which attempt to bridge the gap from associated genetic variants to phenotype by helping define the functional roles of GWAS loci in the development of neuropsychiatric disorders and traits.

RECENT FINDINGS: Several common 'omics' approaches have been applied to examine neuropsychiatric traits, such as nearest-gene mapping, trans-ethnic fine mapping, annotation enrichment analysis, transcriptomic analysis, and pathway analysis, and each of these approaches has strengths and limitations in providing insight into biological mechanisms. One popular emerging method is the examination of tissue-specific genetically-regulated gene expression (GReX), which aggregates the genetic variants' effects at the gene-level. Furthermore, proteomic, metabolomic, and microbiomic studies and phenome-wide association studies will further enhance our understanding of neuropsychiatric traits.

SUMMARY: GWAS has been applied to neuropsychiatric traits for a decade, but our understanding about the biological function of identified variants remains limited. Today, technological advancements have created analytical approaches for integrating transcriptomics, metabolomics, proteomics, pharmacology and toxicology as tools for understanding the functional roles of genetics variants. These data, as well as the broader clinical information provided by electronic health records, can provide additional insight and complement genomic analyses.

Keywords: Functional Annotation; Functional Interpretation; Genetically Regulated Expression; Genome-Wide Association Studies; Omics

Conflict of interest statement

Conflict of Interest Hung-Hsin Chen, Lauren E. Petty, Adam C. Naj, and Jennifer E. Below each declare no potential conflicts of interest.

References

  1. Transl Psychiatry. 2017 Jan 10;7(1):e993 - PubMed
  2. Science. 2012 Sep 7;337(6099):1190-5 - PubMed
  3. Nat Neurosci. 2016 Jan;19(1):40-7 - PubMed
  4. PLoS Genet. 2010 Apr 01;6(4):e1000888 - PubMed
  5. Clin Pharmacol Ther. 2014 Mar;95(3):254-7 - PubMed
  6. Science. 2015 Feb 6;347(6222):664-7 - PubMed
  7. Cell Host Microbe. 2016 May 11;19(5):731-43 - PubMed
  8. Nature. 2008 Mar 27;452(7186):423-8 - PubMed
  9. Nat Genet. 2016 May;48(5):481-7 - PubMed
  10. BMC Neurosci. 2018 Apr 19;19(Suppl 1):22 - PubMed
  11. Transl Psychiatry. 2017 Feb 21;7(2):e1037 - PubMed
  12. Nat Genet. 2016 Mar;48(3):245-52 - PubMed
  13. Nucleic Acids Res. 2016 Jul 27;44(13):6046-54 - PubMed
  14. J Stat Softw. 2010;33(1):1-22 - PubMed
  15. Nature. 2008 Apr 3;452(7187):633-7 - PubMed
  16. Nature. 2014 May 29;509(7502):582-7 - PubMed
  17. N Engl J Med. 2015 Feb 26;372(9):793-5 - PubMed
  18. Genomics. 2015 Sep;106(3):159-164 - PubMed
  19. Mol Psychiatry. 2016 Apr;21(4):516-22 - PubMed
  20. Nature. 2009 Sep 10;461(7261):272-6 - PubMed
  21. J Psychiatr Res. 2017 Apr;87:23-29 - PubMed
  22. Nat Genet. 2014 Jun;46(6):543-550 - PubMed
  23. Science. 2007 May 11;316(5826):889-94 - PubMed
  24. Genome Med. 2009 Jan 22;1(1):11 - PubMed
  25. BMC Med Genomics. 2011 Jan 26;4:13 - PubMed
  26. Nucleic Acids Res. 2019 Jan 8;47(D1):D590-D595 - PubMed
  27. Nat Rev Genet. 2011 Jun;12(6):417-28 - PubMed
  28. Nat Biotechnol. 2002 May;20(5):508-12 - PubMed
  29. Nucleic Acids Res. 2001 Jan 1;29(1):308-11 - PubMed
  30. Genome Res. 2017 Nov;27(11):1859-1871 - PubMed
  31. Nat Neurosci. 2018 Sep;21(9):1161-1170 - PubMed
  32. Brain Behav Immun. 2014 May;38:1-12 - PubMed
  33. Nat Rev Genet. 2012 Jul 10;13(8):537-51 - PubMed
  34. PLoS One. 2011 May 11;6(5):e19586 - PubMed
  35. Brain Imaging Behav. 2012 Dec;6(4):634-48 - PubMed
  36. Schizophr Res. 2010 Sep;122(1-3):38-42 - PubMed
  37. Nat Genet. 2018 May;50(5):668-681 - PubMed
  38. PLoS One. 2015 Nov 03;10(11):e0140301 - PubMed
  39. PLoS Comput Biol. 2010 May 06;6(5):e1000770 - PubMed
  40. PLoS Genet. 2014 May 15;10(5):e1004383 - PubMed
  41. JAMA Psychiatry. 2014 Jun;71(6):657-64 - PubMed
  42. J Am Med Inform Assoc. 2010 Sep-Oct;17(5):568-74 - PubMed
  43. Mol Psychiatry. 2019 Mar;24(3):421-430 - PubMed
  44. Nat Genet. 2000 May;25(1):25-9 - PubMed
  45. Genome Biol. 2015 Sep 15;16:191 - PubMed
  46. Circulation. 2010 Nov 16;122(20):2016-21 - PubMed
  47. Neurol Genet. 2015 Jul 23;1(2):e15 - PubMed
  48. Circulation. 2013 Apr 2;127(13):1377-85 - PubMed
  49. Bioinformatics. 2018 Aug 15;34(16):2724-2731 - PubMed
  50. BMC Med Genomics. 2016 Jan 21;9:5 - PubMed
  51. Nature. 2014 Jul 24;511(7510):421-7 - PubMed
  52. Am J Hum Genet. 2007 Dec;81(6):1278-83 - PubMed
  53. Nucleic Acids Res. 2011 Jan;39(Database issue):D691-7 - PubMed
  54. Nat Commun. 2017 Feb 27;8:14357 - PubMed
  55. Nat Rev Genet. 2013 Jul;14(7):483-95 - PubMed
  56. Nat Rev Genet. 2016 Mar;17(3):129-45 - PubMed
  57. Proc Natl Acad Sci U S A. 1967 Jul;58(1):199-205 - PubMed
  58. Nucleic Acids Res. 2010 Sep;38(16):e164 - PubMed
  59. Nature. 2017 Oct 11;550(7675):204-213 - PubMed
  60. Nat Biotechnol. 2012 Feb 26;30(3):271-7 - PubMed
  61. Genome Biol. 2011;12(1):R10 - PubMed
  62. Sci Rep. 2015 Nov 30;5:17417 - PubMed
  63. Alzheimers Dement. 2017 Jul;13(7):727-738 - PubMed
  64. Nat Genet. 2013 Jun;45(6):580-5 - PubMed
  65. Nat Biotechnol. 2012 Feb 26;30(3):265-70 - PubMed
  66. Nat Neurosci. 2016 Jan;19(1):48-54 - PubMed
  67. Am J Hum Genet. 2016 Oct 6;99(4):817-830 - PubMed
  68. Nat Rev Genet. 2004 Dec;5(12):936-48 - PubMed
  69. Nat Genet. 2018 Apr;50(4):538-548 - PubMed
  70. Transl Psychiatry. 2018 Jan 10;8(1):10 - PubMed
  71. Nat Biotechnol. 2015 Apr;33(4):342-5 - PubMed
  72. PLoS One. 2013 Jun 10;8(6):e63481 - PubMed
  73. Cell Rep. 2017 Nov 28;21(9):2597-2613 - PubMed
  74. Nat Genet. 2018 Jul;50(7):956-967 - PubMed
  75. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 - PubMed
  76. Biol Psychiatry. 2018 Mar 15;83(6):492-498 - PubMed
  77. Fly (Austin). 2012 Apr-Jun;6(2):80-92 - PubMed
  78. Mol Psychiatry. 2019 Mar;24(3):378-389 - PubMed
  79. Brief Bioinform. 2009 Jan;10(1):35-52 - PubMed
  80. Nat Neurosci. 2014 Sep;17(9):1156-63 - PubMed
  81. Nucleic Acids Res. 2017 Jan 4;45(D1):D896-D901 - PubMed
  82. PLoS Genet. 2016 Jan 25;12(1):e1005803 - PubMed
  83. Philos Trans R Soc Lond B Biol Sci. 2013 May 06;368(1620):20120362 - PubMed
  84. Neurobiol Aging. 2015 Apr;36(4):1766.e5-1766.e12 - PubMed
  85. Nat Genet. 2019 Mar;51(3):568-576 - PubMed
  86. Behav Genet. 2018 Sep;48(5):374-385 - PubMed
  87. Nat Genet. 2017 Dec;49(12):1752-1757 - PubMed
  88. Nat Neurosci. 2017 Aug;20(8):1052-1061 - PubMed
  89. PLoS Comput Biol. 2012;8(12):e1002822 - PubMed
  90. Circ Cardiovasc Genet. 2009 Aug;2(4):354-61 - PubMed
  91. PLoS Genet. 2016 Nov 11;12(11):e1006423 - PubMed
  92. Nature. 2013 Jul 4;499(7456):79-82 - PubMed
  93. Hum Mutat. 2016 Mar;37(3):235-41 - PubMed
  94. Nat Genet. 2015 Aug;47(8):856-60 - PubMed
  95. Annu Rev Public Health. 2010;31:9-20 4 p following 20 - PubMed
  96. Nature. 2014 Mar 20;507(7492):371-5 - PubMed
  97. Nat Genet. 2015 Sep;47(9):1091-8 - PubMed
  98. Nucleic Acids Res. 2017 Jan 4;45(D1):D331-D338 - PubMed
  99. Nat Genet. 2019 Dec;51(12):1670-1678 - PubMed
  100. Eur J Hum Genet. 2012 Sep;20(9):1004-8 - PubMed
  101. Alzheimers Res Ther. 2017 Apr 27;9(1):29 - PubMed
  102. Neurobiol Dis. 2009 Aug;35(2):165-76 - PubMed
  103. Nature. 2015 Feb 12;518(7538):197-206 - PubMed
  104. Mol Vis. 2014 Sep 19;20:1281-95 - PubMed
  105. PLoS One. 2011;6(12):e29451 - PubMed
  106. J Am Med Inform Assoc. 2012 Mar-Apr;19(2):212-8 - PubMed
  107. Mol Psychiatry. 2012 Feb;17(2):223-33 - PubMed
  108. PLoS One. 2016 Feb 26;11(2):e0148717 - PubMed

Publication Types

Grant support