Display options
Share it on

Biotechnol Bioeng. 2021 May;118(5):1805-1817. doi: 10.1002/bit.27694. Epub 2021 Feb 04.

Development of a rapid polarized total synchronous fluorescence spectroscopy (pTSFS) method for protein quantification in a model bioreactor broth.

Biotechnology and bioengineering

Bernard O Boateng, Saioa Elcoroaristizabal, Alan G Ryder

Affiliations

  1. Nanoscale BioPhotonics Laboratory, School of Chemistry, National University of Ireland, Galway, Ireland.

PMID: 33501639 DOI: 10.1002/bit.27694

Abstract

Protein quantification during bioprocess monitoring is essential for biopharmaceutical manufacturing and is complicated by the complex chemical composition of the bioreactor broth. Here we present the early-stage development and optimization of a polarized total synchronous fluorescence spectroscopy (pTSFS) method for protein quantification in a hydrolysate-protein model (mimics clarified bioreactor broth samples) using a standard benchtop laboratory fluorometer. We used UV transmitting polarizers to provide wider range pTSFS spectra for screening of the four different TSFS spectra generated by the measurement: parallel (||), perpendicular (⊥), unpolarized (T) intensity spectra and anisotropy maps. TSFS

© 2021 Wiley Periodicals LLC.

Keywords: bioprocess monitoring; chemometrics; multidimensional fluorescence; polarization; process analytical technology; protein

References

  1. Anderson-Cook, C. M., Borror, C. M., & Montgomery, D. C. (2009). Response surface design evaluation and comparison. Journal of statistical planning and inference, 139(2), 629-641. https://doi.org/10.1016/j.jspi.2008.04.004 - PubMed
  2. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1), 248-254. https://doi.org/10.1016/0003-2697(76)90527-3 - PubMed
  3. Buckley, K., & Ryder, A. G. (2017). Applications of Raman spectroscopy in biopharmaceutical manufacturing: A short review. Applied Spectroscopy, 71(6), 1085-1116. https://doi.org/10.1177/0003702817703270 - PubMed
  4. Calvet, A., Li, B. Y., & Ryder, A. G. (2014). A rapid fluorescence based method for the quantitative analysis of cell culture media photo-degradation. Analytica Chimica Acta, 807, 111-119. https://doi.org/10.1016/j.aca.2013.11.028 - PubMed
  5. Casamayou-Boucau, Y., & Ryder, A. G. (2017). Extended wavelength anisotropy resolved multidimensional emission spectroscopy (ARMES) measurements: Better filters, validation standards, and Rayleigh scatter removal methods. Methods Appl Fluoresc, 5(3), 037001. https://doi.org/10.1088/2050-6120/aa7763 - PubMed
  6. Casamayou-Boucau, Y., & Ryder, A. G. (2018). Accurate anisotropy recovery from fluorophore mixtures using multivariate curve resolution (MCR). Analytica Chimica Acta, 1000, 132-143. https://doi.org/10.1016/j.aca.2017.11.031 - PubMed
  7. Casamayou-Boucau, Y., & Ryder, A. G. (2020). Quantitative analysis of weakly bound insulin oligomers in solution using polarized multidimensional fluorescence spectroscopy. Analytica Chimica Acta, 1138, 18-29. https://doi.org/10.1016/j.aca.2020.09.007 - PubMed
  8. Cervera, A. E., Petersen, N., Lantz, A. E., Larsen, A., & Gernaey, K. V. (2009). Application of near-infrared spectroscopy for monitoring and control of cell culture and fermentation. Biotechnology Progress, 25(6), 1561-1581. https://doi.org/10.1002/btpr.280 - PubMed
  9. Chiappini, F. A., Teglia, C. M., Forno, Á. G., & Goicoechea, H. C. (2020). Modelling of bioprocess non-linear fluorescence data for at-line prediction of etanercept based on artificial neural networks optimized by response surface methodology. Talanta, 210, 120664. https://doi.org/10.1016/j.talanta.2019.120664 - PubMed
  10. Chong, I. G., & Jun, C. H. (2005). Performance of some variable selection methods when multicollinearity is present. Chemometrics and Intelligent Laboratory Systems, 78(1-2), 103-112. https://doi.org/10.1016/j.chemolab.2004.12.011 - PubMed
  11. Chutipongtanate, S., Watcharatanyatip, K., Homvises, T., Jaturongkakul, K., & Thongboonkerd, V. (2012). Systematic comparisons of various spectrophotometric and colorimetric methods to measure concentrations of protein, peptide and amino acid: Detectable limits, linear dynamic ranges, interferences, practicality and unit costs. Talanta, 98, 123-129. https://doi.org/10.1016/j.talanta.2012.06.058 - PubMed
  12. Classen, J., Aupert, F., Reardon, K. F., Solle, D., & Scheper, T. (2017). Spectroscopic sensors for in-line bioprocess monitoring in research and pharmaceutical industrial application. Analytical and Bioanalytical Chemistry, 409(3), 651-666. https://doi.org/10.1007/s00216-016-0068-x - PubMed
  13. van der Voet, H. (1994). Comparing the predictive accuracy of models using a simple randomization test. Chemometrics and Intelligent Laboratory Systems, 25(2), 313-323. https://doi.org/10.1016/0169-7439(94)85050-X - PubMed
  14. Derringer, G., & Suich, R. (1980). Simultaneous optimization of several response variables. Journal of Quality Technology, 12(4), 214-219. https://doi.org/10.1080/00224065.1980.11980968 - PubMed
  15. Despagne, F., Massart, D. L., & Chabot, P. (2000). Development of a robust calibration model for nonlinear in-line process data. Analytical Chemistry, 72(7), 1657-1665. https://doi.org/10.1021/ac991076k - PubMed
  16. Elcoroaristizabal, S., Bro, R., García, J. A., & Alonso, L. (2015). PARAFAC models of fluorescence data with scattering: A comparative study. Chemometrics and Intelligent Laboratory Systems, 142(Suppl C), 124-130. https://doi.org/10.1016/j.chemolab.2015.01.017 - PubMed
  17. Faassen, S. M., & Hitzmann, B. (2015). Fluorescence spectroscopy and chemometric modeling for bioprocess monitoring. Sensors, 15(5), 10271-10291. https://doi.org/10.3390/s150510271 - PubMed
  18. Farres, M., Platikanov, S., Tsakovski, S., & Tauler, R. (2015). Comparison of the variable importance in projection (VIP) and of the selectivity ratio (SR) methods for variable selection and interpretation. Journal of Chemometrics, 29(10), 528-536. https://doi.org/10.1002/cem.2736 - PubMed
  19. Flecha, F. L. G., & Levi, V. (2003). Determination of the molecular size of BSA by fluorescence anisotropy. Biochemistry and Molecular Biology Education, 31(5), 319-322. https://doi.org/10.1002/bmb.2003.494031050261 - PubMed
  20. Geladi, P. (2002). Some recent trends in the calibration literature. Chemometrics and Intelligent Laboratory Systems, 60(1), 211-224. https://doi.org/10.1016/S0169-7439(01)00197-6 - PubMed
  21. Ghisaidoobe, A. B. T., & Chung, S. J. (2014). Intrinsic tryptophan fluorescence in the detection and analysis of proteins: A focus on forster resonance energy transfer techniques. International Journal of Molecular Sciences, 15(12), 22518-22538. https://doi.org/10.3390/ijms151222518 - PubMed
  22. Graf, A., Classen, J., Solle, D., Hitzmann, B., Rebner, K., & Hoehse, M. (2019). A novel LED-based 2D-fluorescence spectroscopy system for in-line monitoring of Chinese hamster ovary cell cultivations-Part I. Engineering in Life Sciences, 19(5), 352-362. https://doi.org/10.1002/elsc.201800149 - PubMed
  23. Gronemeyer, P., Ditz, R., & Strube, J. (2014). Trends in upstream and downstream process development for antibody manufacturing. Bioengineering (Basel), 1(4), 188-212. https://doi.org/10.3390/bioengineering1040188 - PubMed
  24. Groza, R. C., Calvet, A., & Ryder, A. G. (2014). A fluorescence anisotropy method for measuring protein concentration in complex cell culture media. Analytica Chimica Acta, 821, 54-61. https://doi.org/10.1016/j.aca.2014.03.007 - PubMed
  25. Haaland, D. M., & Thomas, E. V. (1988). Partial Least-Squares Methods for Spectral Analyses. 1. Relation to other Quantitative Calibration Methods and the Extraction of Qualitative Information. Analytical Chemistry, 60(11), 1193-1202. https://doi.org/10.1021/ac00162a020 - PubMed
  26. Hakemeyer, C., Strauss, U., Werz, S., Folque, F., & Menezes, J. C. (2013). Near-infrared and two-dimensional fluorescence spectroscopy monitoring of monoclonal antibody fermentation media quality: Aged media decreases cell growth. Biotechnology Journal, 8(7), 835-846. https://doi.org/10.1002/biot.201200355 - PubMed
  27. ICH Guideline, I. H. T. (2005). Validation of analytical procedures: text and methodology Q2 (R1). Paper presented at the International conference on harmonization, Geneva, Switzerland. - PubMed
  28. Jensen, W. A. (2017). Response Surface Methodology: Process and Product Optimization Using Designed Experiments 4th edition. Journal of Quality Technology, 49(2), 186-187. - PubMed
  29. Jose, G. E., Folque, F., Menezes, J. C., Werz, S., Strauss, U., & Hakemeyer, C. (2011). Predicting Mab Product Yields from Cultivation Media Components, Using Near-Infrared and 2D-Fluorescence Spectroscopies. Biotechnology Progress, 27(5), 1339-1346. https://doi.org/10.1002/btpr.638 - PubMed
  30. de Juan, A., Jaumot, J., & Tauler, R. A. (2014). Multivariate curve resolution (MCR). Solving the mixture analysis problem. Analytical Methods, 6(14), 4964-4976. https://doi.org/10.1039/c4ay00571f - PubMed
  31. Lakowicz, J. R. (2006). Principles of Fluorescence Spectroscopy. (3rd Edition ed.). New York: Springer. Retrieved from https://link.springer.com/book/10.1007/978-0-387-46312-4 - PubMed
  32. Leardi, R., Seasholtz, M. B., & Pell, R. J. (2002). Variable selection for multivariate calibration using a genetic algorithm: prediction of additive concentrations in polymer films from Fourier transform-infrared spectral data. Analytica Chimica Acta, 461(2), 189-200. https://doi.org/10.1016/S0003-2670(02)00272-6 - PubMed
  33. Lemaillet, P., Cooksey, C. C., Levine, Z. H., Pintar, A. L., Hwang, J., & Allen, D. W. (2016). National Institute of Standards and Technology measurement service of the optical properties of biomedical phantoms: Current status. In (Eds.) Raghavachari, R. & Liang, R., Design and Quality for Biomedical Technologies Ix (9700 Bellingham: Spie-Int Soc Optical Engineering. - PubMed
  34. Li, B., Ray, B. H., Leister, K. J., & Ryder, A. G. (2013). Performance monitoring of a mammalian cell based bioprocess using Raman spectroscopy. Analytica Chimica Acta, 796(0), 84-91. https://doi.org/10.1016/j.aca.2013.07.058 - PubMed
  35. Li, B., Ryan, P. W., Ray, B. H., Leister, K. J., Sirimuthu, N. M. S., & Ryder, A. G. (2010). Rapid Characterization and Quality Control of Complex Cell Culture Media Solutions Using Raman Spectroscopy and Chemometrics. Biotechnology and Bioengineering, 107(2), 290-301. https://doi.org/10.1002/bit.22813 - PubMed
  36. Li, B., Ryan, P. W., Shanahan, M., Leister, K. J., & Ryder, A. G. (2011). Fluorescence excitation-emission matrix (EEM) spectroscopy for rapid identification and quality evaluation of cell culture media components. Applied Spectroscopy, 65(11), 1240-1249. https://doi.org/10.1366/11-06383 - PubMed
  37. Li, B., Shanahan, M., Calvet, A., Leister, K. J., & Ryder, A. G. (2014). Comprehensive, quantitative bioprocess productivity monitoring using fluorescence EEM spectroscopy and chemometrics. Analyst, 139(7), 1661-1671. https://doi.org/10.1039/c4an00007b - PubMed
  38. Li, B. Y., Sirimuthu, N. M. S., Ray, B. H., & Ryder, A. G. (2012). Using surface-enhanced Raman scattering (SERS) and fluorescence spectroscopy for screening yeast extracts, a complex component of cell culture media. Journal of Raman Spectroscopy, 43(8), 1074-1082. https://doi.org/10.1002/jrs.3141 - PubMed
  39. Mandel, J., & Linning, F. J. (1957). Study of accuracy in chemical analysis using linear calibration curves. Analytical Chemistry, 29(5), 743-749. https://doi.org/10.1021/ac60125a002 - PubMed
  40. Melcher, M., Scharl, T., Spangl, B., Luchner, M., Cserjan, M., Bayer, K., & Striedner, G. (2015). The potential of random forest and neural networks for biomass and recombinant protein modeling in Escherichia coli fed-batch fermentations. Biotechnology Journal, 10, 1770-1782. https://doi.org/10.1002/biot.201400790 - PubMed
  41. Mosser, M., Kapel, R., Chevalot, I., Olmos, E., Marc, I., Marc, A., & Oriol, E. (2015). Fractionation of yeast extract by nanofiltration process to assess key compounds involved in CHO cell culture improvement. Biotechnology Progress, 31(4), 875-882. https://doi.org/10.1002/btpr.2110 - PubMed
  42. Murphy, K. R., Stedmon, C. A., Graeber, D., & Bro, R. (2013). Fluorescence spectroscopy and multi-way techniques. PARAFAC. Analytical Methods, 5(23), 6557-6566. https://doi.org/10.1039/c3ay41160e - PubMed
  43. Naveenraj, S., & Anandan, S. (2013). Binding of serum albumins with bioactive substances-Nanoparticles to drugs. Journal of Photochemistry and Photobiology C-Photochemistry Reviews, 14, 53-71. https://doi.org/10.1016/j.jphotochemrev.2012.09.001 - PubMed
  44. Naes, T., Isaksson, T., Fearn, T., & Davies, T. (2002). A user friendly guide to multivariate calibration and classification. NIR publications. - PubMed
  45. Nørgaard, L., Saudland, A., Wagner, J., Nielsen, J. P., Munck, L., & Engelsen, S. B. (2000). Interval partial least-squares regression (iPLS): A comparative chemometric study with an example from near-infrared spectroscopy. Applied Spectroscopy, 54(3), 413-419. https://doi.org/10.1366/0003702001949500 - PubMed
  46. Odman, P., Johansen, C. L., Olsson, L., Gernaey, K. V., & Lantz, A. E. (2010). Sensor combination and chemometric variable selection for online monitoring of Streptomyces coelicolor fed-batch cultivations. Applied Microbiology and Biotechnology, 86(6), 1745-1759. https://doi.org/10.1007/s00253-009-2412-y - PubMed
  47. Ohadi, K., Aghamohseni, H., Legge, R. L., & Budman, H. M. (2014). Fluorescence-based soft sensor for at situ monitoring of Chinese hamster ovary cell cultures. Biotechnology and Bioengineering, 111(8), 1577-1586. https://doi.org/10.1002/bit.25222 - PubMed
  48. Ohadi, K., Legge, R. L., & Budman, H. M. (2015). Intrinsic fluorescence-based at situ soft sensor for monitoring monoclonal antibody aggregation. Biotechnology Progress, 31(5), 1423-1432. https://doi.org/10.1002/btpr.2140 - PubMed
  49. Olivieri, A. C. (2018). Introduction to multivariate calibration: A practical approach. Springer. Retrieved from https://www.springer.com/gp/book/9783319970967 - PubMed
  50. Rathore, A. S., Bhambure, R., & Ghare, V. (2010). Process analytical technology (PAT) for biopharmaceutical products. Analytical and Bioanalytical Chemistry, 398(1), 137-154. https://doi.org/10.1007/s00216-010-3781-x - PubMed
  51. Rathore, A. S., & Winkle, H. (2009). Quality by design for biopharmaceuticals. Nature Biotechnology, 27(1), 26-34. https://doi.org/10.1038/nbt0109-26 - PubMed
  52. Read, E. K., Park, J. T., Shah, R. B., Riley, B. S., Brorson, K. A., & Rathore, A. S. (2010). Process analytical technology (PAT) for biopharmaceutical products: Part I. Concepts and applications. Biotechnology and Bioengineering, 105(2), 276-284. https://doi.org/10.1002/bit.22528 - PubMed
  53. Reusch, D., Haberger, M., Falck, D., Peter, B., Maier, B., Gassner, J., Hook, M., Wagner, K., Bonnington, L., Bulau, P., & Wuhrer, M. (2015). Comparison of methods for the analysis of therapeutic immunoglobulin G Fc-glycosylation profiles-Part 2: Mass spectrometric methods. mAbs, 7(4), 732-742. https://doi.org/10.1080/19420862.2015.1045173 - PubMed
  54. Ryan, P. W., Li, B., Shanahan, M., Leister, K. J., & Ryder, A. G. (2010). Prediction of cell culture media performance using fluorescence spectroscopy. Analytical Chemistry, 82(4), 1311-1317. https://doi.org/10.1021/Ac902337c - PubMed
  55. Ryder, A. G. (2018). Cell culture media analysis using rapid spectroscopic methods. Current Opinion in Chemical Engineering, 22, 11-17. https://doi.org/10.1016/j.coche.2018.08.008 - PubMed
  56. Ryder, A. G., Stedmon, C. A., Harrit, N., & Bro, R. (2017). Calibration, standardization, and quantitative analysis of multidimensional fluorescence (MDF) measurements on complex mixtures (IUPAC Technical Report). Pure and Applied Chemistry, 89(12), 1849-1870. https://doi.org/10.1515/pac-2017-0610 - PubMed
  57. Schwab, K., Amann, T., Schmid, J., Handrick, R., & Hesse, F. (2016). Exploring the capabilities of fluorometric online monitoring on chinese hamster ovary cell cultivations producing a monoclonal antibody. Biotechnology Progress, 32(6), 1592-1600. https://doi.org/10.1002/btpr.2326 - PubMed
  58. Shukla, A. A., Wolfe, L. S., Mostafa, S. S., & Norman, C. (2017). Evolving trends in mAb production processes. Bioengineering & Translational Medicine, 2(1), 58-69. https://doi.org/10.1002/btm2.10061 - PubMed
  59. Skoog, D. A. (1976). Fundamentals of analytical chemistry (3rd ed.). New York, London: New York, London: Holt, Rinehart and Winston. - PubMed
  60. Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J., & Klenk, D. C. (1985). Measurement of protein using bicinchoninic acid. Analytical Biochemistry, 150(1), 76-85. https://doi.org/10.1016/0003-2697(85)90442-7 - PubMed
  61. Steiner-Browne, M., Elcoroaristizabal, S., & Ryder, A. G. (2019). Using polarized total synchronous fluorescence spectroscopy (pTSFS) with PARAFAC analysis for characterizing intrinsic protein emission. Chemometrics and Intelligent Laboratory Systems, 194, 103871. https://doi.org/10.1016/j.chemolab.2019.103871 - PubMed
  62. Teixeira, A. P., Duarte, T. M., Carrondo, M. J. T., & Alves, P. M. (2011). Synchronous fluorescence spectroscopy as a novel tool to enable PAT applications in bioprocesses. Biotechnology and Bioengineering, 108(8), 1852-1861. https://doi.org/10.1002/bit.23131 - PubMed
  63. Walker, J. M. (1996). The protein protocols handbook (1996). Springer Science & Business Media. - PubMed
  64. Wiberg, K., Sterner-Molin, A., & Jacobsson, S. P. (2004). Simultaneous determination of albumin and immunoglobulin G with fluorescence spectroscopy and multivariate calibration. Talanta, 62(3), 567-574. https://doi.org/10.1016/j.talanta.2003.08.024 - PubMed
  65. Wold, S., Sjöström, M., & Eriksson, L. (2001). PLS-regression: A basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, 58(2), 109-130. - PubMed
  66. Wold, S., Sjöström, M., & Eriksson, L. (2002). Partial least squares projections to latent structures (PLS) in chemistry. In P. von Ragué Schleyer, N. L. Allinger, T. Clark, J. Gasteiger, P. A. Kollman, H. F. Schaefer & P. R. Schreiner (Eds.), Encyclopedia of Computational Chemistry. Wiley. Retrieved from https://onlinelibrary.wiley.com/doi/abs/10.1002/0470845015.cpa012 - PubMed
  67. Zavatti, V., Budman, H., Legge, R., & Tamer, M. (2016). Monitoring of an antigen manufacturing process. Bioprocess and Biosystems Engineering, 39(6), 855-869. https://doi.org/10.1007/s00449-016-1565-1 - PubMed
  68. Zhang, H. X., Huang, X., & Zhang, M. (2008). Spectral diagnostics of the interaction between pyridoxine hydrochloride and bovine serum albumin in vitro. Molecular Biology Reports, 35(4), 699-705. https://doi.org/10.1007/s11033-007-9143-x - PubMed

Publication Types