Display options
Share it on

Exp Dermatol. 2021 Jun;30(6):782-791. doi: 10.1111/exd.14298. Epub 2021 Feb 23.

Arginase 1.

Experimental dermatology

Davide Neri, Melanie Carevic-Neri, Jürgen Brück, Julia Holstein, Iris Schäfer, Farzan Solimani, Rupert Handgretinger, Dominik Hartl, Kamran Ghoreschi

Affiliations

  1. Molecular Immunology Charité (MIC), Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität of Berlin, and Berlin Institute of Health, Berlin, Germany.
  2. Department of Pediatrics 1, Medical Center Tübingen, Eberhard Karls University, Tübingen, Germany.
  3. Department of Dermatology, Medical Center Tübingen, Eberhard Karls University, Tübingen, Germany.
  4. Novartis Institutes for Biomedical Research, Basel, Switzerland.

PMID: 33528891 DOI: 10.1111/exd.14298

Abstract

Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells, which are characterized by their capability to suppress T-cell responses. While MDSCs have been traditionally associated with cancer diseases, their role as regulators of autoimmune diseases is emerging. Pemphigus is a chronic autoimmune blistering skin disease characterized by dysregulated T-cell responses and autoantibody production. The role of MDSCs in pemphigus disease has not been defined yet. The aim of this study was to characterize MDSCs in pemphigus patients and to dissect their relationship with CD4

© 2021 The Authors. Experimental Dermatology published by John Wiley & Sons.

Keywords: MDSC; T helper cells; autoimmune skin blistering disease; autoimmunity; desmoglein

References

  1. Zea AH, Rodriguez PC, Atkins MB, et al. Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: a mechanism of tumor evasion. Cancer Res. 2005;65(8):3044-3048. - PubMed
  2. Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol. 2009;9(3):162-174. - PubMed
  3. Wang Y, Schafer CC, Hough KP, et al. Myeloid-derived suppressor cells impair B cell responses in lung cancer through IL-7 and STAT5. J Immunol. 2018;201(1):278-295. - PubMed
  4. Gabrilovich DI, Ostrand-Rosenberg S, Bronte V. Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol. 2012;12(4):253-268. - PubMed
  5. Bronte V, Brandau S, Chen SH, et al. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun. 2016;7:12150. - PubMed
  6. Youn JI, Collazo M, Shalova IN, Biswas SK, Gabrilovich DI. Characterization of the nature of granulocytic myeloid-derived suppressor cells in tumor-bearing mice. J Leukoc Biol. 2012;91(1):167-181. - PubMed
  7. Movahedi K, Guilliams M, Van den Bossche J, et al. Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood. 2008;111(8):4233-4244. - PubMed
  8. Rodriguez PC, Quiceno DG, Ochoa AC. L-arginine availability regulates T-lymphocyte cell-cycle progression. Blood. 2007;109(4):1568-1573. - PubMed
  9. Schmielau J, Finn OJ. Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of t-cell function in advanced cancer patients. Cancer Res. 2001;61(12):4756-4760. - PubMed
  10. Huang B, Pan PY, Li Q, et al. Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res. 2006;66(2):1123-1131. - PubMed
  11. Hoechst B, Gamrekelashvili J, Manns MP, Greten TF, Korangy F. Plasticity of human Th17 cells and iTregs is orchestrated by different subsets of myeloid cells. Blood. 2011;117(24):6532-6541. - PubMed
  12. Lelis FJN, Jaufmann J, Singh A, et al. Myeloid-derived suppressor cells modulate B-cell responses. Immunol Lett. 2017;188:108-115. - PubMed
  13. Jaufmann J, Lelis FJN, Teschner AC, et al. Human monocytic myeloid-derived suppressor cells impair B-cell phenotype and function in vitro. Eur J Immunol. 2020;50(1):33-47. - PubMed
  14. Park MJ, Lee SH, Kim EK, et al. Myeloid-derived suppressor cells induce the expansion of regulatory B cells and ameliorate autoimmunity in the sanroque mouse model of systemic lupus erythematosus. Arthritis Rheumatol. 2016;68(11):2717-2727. - PubMed
  15. Wu H, Zhen Y, Ma Z, et al. Arginase-1-dependent promotion of TH17 differentiation and disease progression by MDSCs in systemic lupus erythematosus. Sci. Transl. Med.. 2016;8(331):331ra340. - PubMed
  16. Kurko J, Vida A, Glant TT, et al. Identification of myeloid-derived suppressor cells in the synovial fluid of patients with rheumatoid arthritis: a pilot study. BMC Musculoskelet Disord. 2014;15:281. - PubMed
  17. Guo C, Hu F, Yi H, et al. Myeloid-derived suppressor cells have a proinflammatory role in the pathogenesis of autoimmune arthritis. Ann Rheum Dis. 2016;75(1):278-285. - PubMed
  18. Schmidt E, Kasperkiewicz M, Joly P. Pemphigus. Lancet. 2019;394(10201):882-894. - PubMed
  19. Amagai M, Klaus-Kovtun V, Stanley JR. Autoantibodies against a novel epithelial cadherin in pemphigus vulgaris, a disease of cell adhesion. Cell. 1991;67(5):869-877. - PubMed
  20. Amagai M, Tsunoda K, Zillikens D, Nagai T, Nishikawa T. The clinical phenotype of pemphigus is defined by the anti-desmoglein autoantibody profile. J Am Acad Dermatol. 1999;40(2 Pt 1):167-170. - PubMed
  21. Mindorf S, Dettmann IM, Krüger S, et al. Routine detection of serum antidesmocollin autoantibodies is only useful in patients with atypical pemphigus. Exp Dermatol. 2017;26(12):1267-1270. - PubMed
  22. Lotti R, Atene CG, Marconi A, et al. Development of a desmocollin-3 active mouse model recapitulating human atypical pemphigus. Front Immunol.. 2019;10:1387. - PubMed
  23. Ishii N, Teye K, Fukuda S, et al. Anti-desmocollin autoantibodies in nonclassical pemphigus. Br J Dermatol. 2015;173(1):59-68. - PubMed
  24. Solimani F, Maglie R, Pollmann R, et al. Thymoma-associated paraneoplastic autoimmune multiorgan syndrome-from pemphigus to lichenoid dermatitis. Front Immunol.. 2019;10:1413. - PubMed
  25. Hertl M, Eming R, Veldman C. T cell control in autoimmune bullous skin disorders. J Clin Invest. 2006;116(5):1159-1166. - PubMed
  26. Holstein J, Solimani F, Baum C, et al. Immunophenotyping in pemphigus reveals a T(H)17/T(FH)17 cell-dominated immune response promoting desmoglein1/3-specific autoantibody production. J Allergy Clin Immunol. 2020;S0091-6749(20):31624-31629. - PubMed
  27. Rizzo C, Fotino M, Zhang Y, Chow S, Spizuoco A, Sinha AA. Direct characterization of human T cells in pemphigus vulgaris reveals elevated autoantigen-specific Th2 activity in association with active disease. Clin Exp Dermatol. 2005;30(5):535-540. - PubMed
  28. Eming R, Budinger L, Riechers R, et al. Frequency analysis of autoreactive T-helper 1 and 2 cells in bullous pemphigoid and pemphigus vulgaris by enzyme-linked immunospot assay. Br J Dermatol. 2000;143(6):1279-1282. - PubMed
  29. Veldman C, Höhne A, Dieckmann D, Schuler G, Hertl M. Type I regulatory T cells specific for desmoglein 3 are more frequently detected in healthy individuals than in patients with pemphigus vulgaris. J Immunol. 2004;172(10):6468-6475. - PubMed
  30. Yuan H, Zhou S, Liu Z, et al. Pivotal role of lesional and perilesional T/B lymphocytes in pemphigus pathogenesis. J Invest Dermatol. 2017;137(11):2362-2370. - PubMed
  31. Kim AR, Han D, Choi JY, et al. Targeting inducible costimulator expressed on CXCR5(+)PD-1(+) T(H) cells suppresses the progression of pemphigus vulgaris. J Allergy Clin Immunol. 2020;146(5):1070-1079.e8. - PubMed
  32. Stoll H, Ost M, Singh A, et al. Staphylococcal enterotoxins dose-dependently modulate the generation of myeloid-derived suppressor cells. Front Cell Infect Microbiol. 2018;8:321. - PubMed
  33. Schmidt E, Dahnrich C, Rosemann A, et al. Novel ELISA systems for antibodies to desmoglein 1 and 3: correlation of disease activity with serum autoantibody levels in individual pemphigus patients. Exp Dermatol. 2010;19(5):458-463. - PubMed
  34. Boulard C, Duvert Lehembre S, Picard-Dahan C, et al. Calculation of cut-off values based on the Autoimmune Bullous Skin Disorder Intensity Score (ABSIS) and Pemphigus Disease Area Index (PDAI) pemphigus scoring systems for defining moderate, significant and extensive types of pemphigus. Br J Dermatol. 2016;175(1):142-149. - PubMed
  35. Mahnke YD, Beddall MH, Roederer M. OMIP-017: human CD4(+) helper T-cell subsets including follicular helper cells. Cytometry A. 2013;83(5):439-440. - PubMed
  36. de St F, Groth B, Zhu E, Asad S, Lee L. Flow cytometric detection of human regulatory T cells. Methods Mole Biol. 2011;707:263-279. - PubMed
  37. Romano A, Parrinello NL, La Cava P, et al. PMN-MDSC and arginase are increased in myeloma and may contribute to resistance to therapy. Expert Rev Mol Diagn. 2018;18(7):675-683. - PubMed
  38. Nagaraj S, Youn J-I, Gabrilovich DI. Reciprocal relationship between myeloid-derived suppressor cells and T cells. J Immunol. 2013;191(1):17-23. - PubMed
  39. Oktem A, Horzum U, Ertop P, et al. Clinical relevance of polymorphonuclear myeloid-derived suppressor cells in autoimmune-blistering disorders pemphigus vulgaris and bullous pemphigoid. J Invest Dermatol. 2020. - PubMed
  40. Eming R, Hennerici T, Backlund J, et al. Pathogenic IgG antibodies against desmoglein 3 in pemphigus vulgaris are regulated by HLA-DRB1*04:02-restricted T cells. J Immunol. 2014;193(9):4391-4399. - PubMed
  41. Hennerici T, Pollmann R, Schmidt T, et al. Increased frequency of T follicular helper cells and elevated interleukin-27 plasma levels in patients with pemphigus. PLoS One. 2016;11(2):e0148919. - PubMed
  42. Meier K, Holstein J, Solimani F, Waschke J, Ghoreschi K. Case report: apremilast for therapy-resistant pemphigus vulgaris. Front Immunol.. 2020;11:588315. - PubMed
  43. Serafini P, Mgebroff S, Noonan K, Borrello I. Myeloid-derived suppressor cells promote cross-tolerance in B-cell lymphoma by expanding regulatory T cells. Cancer Res. 2008;68(13):5439-5449. - PubMed
  44. MacDonald KP, Rowe V, Clouston AD, et al. Cytokine expanded myeloid precursors function as regulatory antigen-presenting cells and promote tolerance through IL-10-producing regulatory T cells. J Immunol. 2005;174(4):1841-1850. - PubMed
  45. Brys L, Beschin A, Raes G, et al. Reactive oxygen species and 12/15-lipoxygenase contribute to the antiproliferative capacity of alternatively activated myeloid cells elicited during helminth infection. J Immunol. 2005;174(10):6095-6104. - PubMed
  46. Highfill SL, Rodriguez PC, Zhou Q, et al. Bone marrow myeloid-derived suppressor cells (MDSCs) inhibit graft-versus-host disease (GVHD) via an arginase-1-dependent mechanism that is up-regulated by interleukin-13. Blood. 2010;116(25):5738-5747. - PubMed
  47. Messmann JJ, Reisser T, Leithäuser F, Lutz MB, Debatin KM, Strauss G. In vitro-generated MDSCs prevent murine GVHD by inducing type 2 T cells without disabling antitumor cytotoxicity. Blood. 2015;126(9):1138-1148. - PubMed
  48. Chatterjee S, Das S, Chakraborty P, Manna A, Chatterjee M, Choudhuri SK. Myeloid derived suppressor cells (MDSCs) can induce the generation of Th17 response from naïve CD4+ T cells. Immunobiology. 2013;218(5):718-724. - PubMed
  49. Zhang H, Wang S, Huang Y, et al. Myeloid-derived suppressor cells are proinflammatory and regulate collagen-induced arthritis through manipulating Th17 cell differentiation. Clin Immunol. 2015;157(2):175-186. - PubMed
  50. Zhang L, Zhang Z, Zhang H, Wu M, Wang Y. Myeloid-derived suppressor cells protect mouse models from autoimmune arthritis via controlling inflammatory response. Inflammation. 2014;37(3):670-677. - PubMed
  51. Yi H, Guo C, Yu X, Zuo D, Wang XY. Mouse CD11b+Gr-1+ myeloid cells can promote Th17 cell differentiation and experimental autoimmune encephalomyelitis. J Immunol. 2012;189(9):4295-4304. - PubMed
  52. Casacuberta-Serra S, Costa C, Eixarch H, et al. Myeloid-derived suppressor cells expressing a self-antigen ameliorate experimental autoimmune encephalomyelitis. Exp Neurol. 2016;286:50-60. - PubMed

Publication Types

Grant support