Display options
Share it on

Biotechnol Bioeng. 2021 May;118(5):2043-2052. doi: 10.1002/bit.27717. Epub 2021 Mar 01.

Production of β-carotene in Saccharomyces cerevisiae through altering yeast lipid metabolism.

Biotechnology and bioengineering

Yijin Zhao, Yueping Zhang, Jens Nielsen, Zihe Liu

Affiliations

  1. Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, China.
  2. College of Veterinary Medicine, China Agricultural University, Beijing, China.
  3. Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
  4. BioInnovation Institute, Copenhagen N, Denmark.

PMID: 33605428 DOI: 10.1002/bit.27717

Abstract

Saccharomyces cerevisiae is a widely used cell factory for the production of fuels and chemicals. However, as a non-oleaginous yeast, S. cerevisiae has a limited production capacity for lipophilic compounds, such as β-carotene. To increase its accumulation of β-carotene, we engineered different lipid metabolic pathways in a β-carotene producing strain and investigated the relationship between lipid components and the accumulation of β-carotene. We found that overexpression of sterol ester synthesis genes ARE1 and ARE2 increased β-carotene yield by 1.5-fold. Deletion of phosphatidate phosphatase (PAP) genes (PAH1, DPP1, and LPP1) also increased β-carotene yield by twofold. Combining these two strategies resulted in a 2.4-fold improvement in β-carotene production compared with the starting strain. These results demonstrated that regulating lipid metabolism pathways is important for β-carotene accumulation in S. cerevisiae, and may also shed insights to the accumulation of other lipophilic compounds in yeast.

© 2021 Wiley Periodicals LLC.

Keywords: Saccharomyces cerevisiae; lipid components; lipid metabolism pathways; β-carotene

References

  1. Adeyo, O., Horn, P. J., Lee, S., Binns, D. D., Chandrahas, A., Chapman, K. D., & Goodman, J. M. (2011). The yeast lipin orthologue Pah1p is important for biogenesis of lipid droplets. Journal of Cell Biology, 192, 1043-1055. - PubMed
  2. Alvarez, H. M., & Steinbuchel, A. (2002). Triacylglycerols in prokaryotic microorganisms. Applied Microbiology and Biotechnology, 60, 367-376. - PubMed
  3. Arendt, P., Miettinen, K., Pollier, J., De Rycke, R., Callewaert, N., & Goossens, A. (2017). An endoplasmic reticulum-engineered yeast platform for overproduction of triterpenoids. Metabolic Engineering, 40, 165-175. - PubMed
  4. Banerjee, A., & Sharkey, T. D. (2014). Methylerythritol 4-phosphate (MEP) pathway metabolic regulation. Natural Products Reports, 31, 1043-1055. - PubMed
  5. Bao, Z., Xiao, H., Liang, J., Zhang, L., Xiong, X., Sun, N., Si, T., & Zhao, H. (2015). Homology-integrated CRISPR-Cas (HI-CRISPR) system for one-step multigene disruption in Saccharomyces cerevisiae. ACS Synthetic Biology, 4, 585-594. - PubMed
  6. Beekwilder, J., van Rossum, H. M., Koopman, F., Sonntag, F., Buchhaupt, M., Schrader, J., Hall, R. D., Bosch, D., Pronk, J. T., van Maris, A. J. A., & Daran, J. M. (2014). Polycistronic expression of a β-carotene biosynthetic pathway in Saccharomyces cerevisiae coupled to β-ionone production. Journal of Biotechnology, 192, 383-392. - PubMed
  7. Bian, G., Deng, Z., & Liu, T. (2017). Strategies for terpenoid overproduction and new terpenoid discovery. Current Opinion in Biotechnology, 48, 234-241. - PubMed
  8. Brennan, T. C. R., Turner, C. D., Krömer, J. O., & Nielsen, L. K. (2012). Alleviating monoterpene toxicity using a two-phase extractive fermentation for the bioproduction of jet fuel mixtures in Saccharomyces cerevisiae. Biotechnology and Bioengineering, 109, 2513-2522. - PubMed
  9. Carman, G. M. (2019). Discoveries of the phosphatidate phosphatase genes in yeast published in the Journal of Biological Chemistry. Journal of Biological Chemistry, 294, 1681-1689. - PubMed
  10. Carman, G. M., & Henry, S. A. (1999). Phospholipid biosynthesis in the yeast Saccharomyces cerevisiae and interrelationship with other metabolic processes. Progress in Lipid Research, 38, 361-399. - PubMed
  11. Carman, G. M., & Henry, S. A. (2007). Phosphatidic acid plays a central role in the transcriptional regulation of glycerophospholipid synthesis in Saccharomyces cerevisiae. Journal of Biological Chemistry, 282, 37293-37297. - PubMed
  12. Chen, Y., Xiao, W., Wang, Y., Liu, H., Li, X., & Yuan, Y. (2016). Lycopene overproduction in Saccharomyces cerevisiae through combining pathway engineering with host engineering. Microbial Cell Factories, 15, 113. - PubMed
  13. Fakas, S., Qiu, Y., Dixon, J. L., Han, G. S., Ruggles, K. V., Garbarino, J., Sturley, S. L., & Carman, G. M. (2011). Phosphatidate phosphatase activity plays key role in protection against fatty acid-induced toxicity in yeast. Journal of Biological Chemistry, 286, 29074-29085. - PubMed
  14. Faulkner, A., Chen, X., Rush, J., Horazdovsky, B., Waechter, C. J., Carman, G. M., & Sternweis, P. C. (1999). The LPP1 and DPP1 gene products account for most of the isoprenoid phosphate phosphatase activities in Saccharomyces cerevisiae. Journal of Biological Chemistry, 274, 14831-14837. - PubMed
  15. Fei, W., Shui, G., Zhang, Y., Krahmer, N., Ferguson, C., Kapterian, T. S., Lin, R. C., Dawes, I. W., Brown, A. J., Li, P., Huang, X., Parton, R. G., Wenk, M. R., Walther, T. C., & Yang, H. (2011). A role for phosphatidic acid in the formation of “supersized” lipid droplets. PLOS Genetics, 7, e1002201. - PubMed
  16. Ferreira, R., Teixeira, P. G., Siewers, V., & Nielsen, J. (2018). Redirection of lipid flux toward phospholipids in yeast increases fatty acid turnover and secretion. Proceedings of the National Academy of Sciences of the United States of America, 115, 1262-1267. - PubMed
  17. Godara, A., Rodriguez, M. A. G., Weatherston, J. D., Peabody, G. L., Wu, H. J., & Kao, K. C. (2019). Beneficial mutations for carotenoid production identified from laboratory-evolved Saccharomyces cerevisiae. Journal of Industrial Microbiology and Biotechnology, 46, 1793-1804. - PubMed
  18. Gueldener, U., Heinisch, J., Koehler, G. J., Voss, D., & Hegemann, J. H. (2002). A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Nucleic Acids Research, 30, e23. - PubMed
  19. Guerfal, M., Claes, K., Knittelfelder, O., De Rycke, R., Kohlwein, S. D., & Callewaert, N. (2013). Enhanced membrane protein expression by engineering increased intracellular membrane production. Microbial Cell Factories, 12, 122. - PubMed
  20. Henry, S. A., Kohlwein, S. D., & Carman, G. M. (2012). Metabolism and regulation of glycerolipids in the yeast Saccharomyces cerevisiae. Genetics, 190, 317-349. - PubMed
  21. Khoomrung, S., Chumnanpuen, P., Jansa-Ard, S., Stahlman, M., Nookaew, I., Boren, J., & Nielsen, J. (2013). Rapid quantification of yeast lipid using microwave-assisted total lipid extraction and HPLC-CAD. Analytical Chemistry, 85, 4912-4919. - PubMed
  22. Knittelfelder, O. L., Weberhofer, B. P., Eichmann, T. O., Kohlwein, S. D., & Rechberger, G. N. (2014). A versatile ultra-high performance LC-MS method for lipid profiling. Journal of Chromatography B, 951-952, 119-128. - PubMed
  23. Koch, B., Schmidt, C., & Daum, G. (2014). Storage lipids of yeasts: A survey of nonpolar lipid metabolism in Saccharomyces cerevisiae, Pichia pastoris, and Yarrowia lipolytica. FEMS Microbiology Reviews, 38, 892-915. - PubMed
  24. Larroude, M., Celinska, E., Back, A., Thomas, S., Nicaud, J.-M., & Ledesma-Amaro, R. (2018). A synthetic biology approach to transform Yarrowia lipolytica into a competitive biotechnological producer of β-carotene. Biotechnology and Bioengineering, 115, 464-472. - PubMed
  25. Liu, G.-S., Li, T., Zhou, W., Jiang, M., Tao, X.-Y., Liu, M., Zhao, M., Ren, Y.-H., Gao, B., Wang, F.-Q., & Wei, D.-Z. (2020). The yeast peroxisome: A dynamic storage depot and subcellular factory for squalene overproduction. Metabolic Engineering, 57, 151-161. - PubMed
  26. Ma, T., Shi, B., Ye, Z., Li, X., Liu, M., Chen, Y., Xia, J., Nielsen, J., Deng, Z., & Liu, T. (2018). Lipid engineering combined with systematic metabolic engineering of Saccharomyces cerevisiae for high-yield production of lycopene. Metabolic Engineering, 52, 134-142. - PubMed
  27. Matthaus, F., Ketelhot, M., Gatter, M., & Barth, G. (2014). Production of lycopene in the non-carotenoid-producing yeast Yarrowia lipolytica. Applied and Environmental Microbiology, 80, 1660-1669. - PubMed
  28. Meadows, A. L., Hawkins, K. M., Tsegaye, Y., Antipov, E., Kim, Y., Raetz, L., Dahl, R. H., Tai, A., Mahatdejkul-Meadows, T., Xu, L., Zhao, L., Dasika, M. S., Murarka, A., Lenihan, J., Eng, D., Leng, J. S., Liu, C. L., Wenger, J. W., Jiang, H., … Tsong, A. E. (2016). Rewriting yeast central carbon metabolism for industrial isoprenoid production. Nature, 537, 694-697. - PubMed
  29. Miao, L., Chi, S., Tang, Y., Su, Z., Yin, T., Guan, G., & Li, Y. (2011). Astaxanthin biosynthesis is enhanced by high carotenogenic gene expression and decrease of fatty acids and ergosterol in a Phaffia rhodozyma mutant strain. FEMS Yeast Research, 11, 192-201. - PubMed
  30. Mora, G., Scharnewski, M., & Fulda, M. (2012). Neutral lipid metabolism influences phospholipid synthesis and deacylation in Saccharomyces cerevisiae. PLOS One, 7, e49269. - PubMed
  31. Nielsen, J., Larsson, C., van Maris, A., & Pronk, J. (2013). Metabolic engineering of yeast for production of fuels and chemicals. Current Opinion in Biotechnology, 24, 398-404. - PubMed
  32. Pascual, F., & Carman, G. M. (2013). Phosphatidate phosphatase, a key regulator of lipid homeostasis. Biochimica et Biophysica Acta/General Subjects, 1831, 514-522. - PubMed
  33. Pascual, F., Soto-Cardalda, A., & Carman, G. M. (2013). PAH1-encoded phosphatidate phosphatase plays a role in the growth phase- and inositol-mediated regulation of lipid synthesis in Saccharomyces cerevisiae. Journal of Biological Chemistry, 288, 35781-35792. - PubMed
  34. Peng, B., Plan, M. R., Chrysanthopoulos, P., Hodson, M. P., Nielsen, L. K., & Vickers, C. E. (2017). A squalene synthase protein degradation method for improved sesquiterpene production in Saccharomyces cerevisiae. Metabolic Engineering, 39, 209-219. - PubMed
  35. Sandager, L., Gustavsson, M. H., Stahl, U., Dahlqvist, A., Wiberg, E., Banas, A., Lenman, M., Ronne, H., & Stymne, S. (2002). Storage lipid synthesis is non-essential in yeast. Journal of Biological Chemistry, 277, 6478-6482. - PubMed
  36. Shiba, Y., Paradise, E. M., Kirby, J., Ro, D. K., & Keasling, J. D. (2007). Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids. Metabolic Engineering, 9, 160-168. - PubMed
  37. Sun, Y., Sun, L., Shang, F., & Yan, G. (2016). Enhanced production of β-carotene in recombinant Saccharomyces cerevisiae by inverse metabolic engineering with supplementation of unsaturated fatty acids. Process Biochemistry, 51, 568-577. - PubMed
  38. Toke, D. A., Bennett, W. L., Dillon, D. A., Wu, W. I., Chen, X., Ostrander, D. B., Oshiro, J., Cremesti, A., Voelker, D. R., Fischl, A. S., & Carman, G. M. (1998). Isolation and characterization of the Saccharomyces cerevisiae DPP1 gene encoding diacylglycerol pyrophosphate phosphatase. Journal of Biological Chemistry, 273, 3278-3284. - PubMed
  39. Toke, D. A., Bennett, W. L., Oshiro, J., Wu, W. I., Voelker, D. R., & Carman, G. M. (1998). Isolation and characterization of the Saccharomyces cerevisiae LPP1 gene encoding a Mg2+-independent phosphatidate phosphatase. Journal of Biological Chemistry, 273, 14331-14338. - PubMed
  40. Trikka, F. A., Nikolaidis, A., Athanasakoglou, A., Andreadelli, A., Ignea, C., Kotta, K., Argiriou, A., Kampranis, S. C., & Makris, A. M. (2015). Iterative carotenogenic screens identify combinations of yeast gene deletions that enhance sclareol production. Microbial Cell Factories, 14, 60. - PubMed
  41. Uribe, S., Ramirez, J., & Pena, A. (1985). Effects of beta-pinene on yeast membrane functions. Journal of Bacteriology, 161, 1195-1200. - PubMed
  42. Wei, L. J., Kwak, S., Liu, J. J., Lane, S., Hua, Q., Kweon, D. H., & Jin, Y. S. (2018). Improved squalene production through increasing lipid contents in Saccharomyces cerevisiae. Biotechnology and Bioengineering, 115, 1793-1800. - PubMed
  43. Xie, W., Liu, M., Lv, X., Lu, W., Gu, J., & Yu, H. (2014). Construction of a controllable beta-carotene biosynthetic pathway by decentralized assembly strategy in Saccharomyces cerevisiae. Biotechnology and Bioengineering, 111, 125-133. - PubMed
  44. Xie, W., Lv, X., Ye, L., Zhou, P., & Yu, H. (2015). Construction of lycopene-overproducing Saccharomyces cerevisiae by combining directed evolution and metabolic engineering. Metabolic Engineering, 30, 69-78. - PubMed
  45. Zhang, Y., Nielsen, J., & Liu, Z. (2017). Engineering yeast metabolism for production of terpenoids for use as perfume ingredients, pharmaceuticals and biofuels. FEMS Yeast Research, 17. - PubMed
  46. Zhang, Y., Wang, J., Wang, Z., Zhang, Y., Shi, S., Nielsen, J., & Liu, Z. (2019). A gRNA-tRNA array for CRISPR-Cas9 based rapid multiplexed genome editing in Saccharomyces cerevisiae. Nature Communications, 10, 1053. - PubMed
  47. Zhao, C., Kim, Y., Zeng, Y., Li, M., Wang, X., Hu, C., Gorman, C., Dai, S. Y., Ding, S. Y., & Yuan, J. S. (2018). Co-compartmentation of terpene biosynthesis and storage via synthetic droplet. ACS Synthetic Biology, 7, 774-781. - PubMed

Publication Types