Display options
Share it on

Elife. 2021 Feb 16;10. doi: 10.7554/eLife.61135.

A spinoparabrachial circuit defined by Tacr1 expression drives pain.

eLife

Arnab Barik, Anupama Sathyamurthy, James Thompson, Mathew Seltzer, Ariel Levine, Alexander Chesler

Affiliations

  1. National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, United States.
  2. National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States.

PMID: 33591273 PMCID: PMC7993995 DOI: 10.7554/eLife.61135

Abstract

Painful stimuli evoke a mixture of sensations, negative emotions and behaviors. These myriad effects are thought to be produced by parallel ascending circuits working in combination. Here, we describe a pathway from spinal cord to brain for ongoing pain. Activation of a subset of spinal neurons expressing Tacr1 evokes a full repertoire of somatotopically directed pain-related behaviors in the absence of noxious input. Tacr1 projection neurons (expressing NKR1) target a tiny cluster of neurons in the superior lateral parabrachial nucleus (PBN-SL). We show that these neurons, which also express Tacr1 (PBN-SL

Keywords: brainstem; mouse; neuroscience; pain; parabrachial nucleus; somatosensation; spinal cord

Conflict of interest statement

AB, AS, JT, MS, AL, AC No competing interests declared

References

  1. Science. 2013 May 24;340(6135):968-71 - PubMed
  2. Cell. 2014 Jun 19;157(7):1535-51 - PubMed
  3. Nat Rev Neurosci. 2006 Jul;7(7):535-47 - PubMed
  4. Nat Neurosci. 2017 Dec;20(12):1734-1743 - PubMed
  5. Cell Rep. 2018 Feb 20;22(8):2216-2225 - PubMed
  6. Nature. 2013 Jul 18;499(7458):295-300 - PubMed
  7. Front Neural Circuits. 2014 Jul 10;8:76 - PubMed
  8. Nat Rev Neurosci. 2010 Dec;11(12):823-36 - PubMed
  9. Neuroscience. 2009 Dec 29;164(4):1794-804 - PubMed
  10. Sci Rep. 2017 Jul 10;7(1):5031 - PubMed
  11. J Clin Invest. 2011 Apr;121(4):1424-8 - PubMed
  12. Nature. 2013 Nov 7;503(7474):111-4 - PubMed
  13. Science. 2017 Aug 18;357(6352):695-699 - PubMed
  14. J Physiol. 1967 Feb;188(3):403-23 - PubMed
  15. Annu Rev Physiol. 2018 Feb 10;80:189-217 - PubMed
  16. Cell. 2015 Jul 16;162(2):363-374 - PubMed
  17. Elife. 2020 Aug 28;9: - PubMed
  18. Cell Metab. 2019 Mar 5;29(3):681-694.e5 - PubMed
  19. Brain Res. 1986 Feb 12;365(1):145-50 - PubMed
  20. Pain. 2017 Mar;158(3):440-456 - PubMed
  21. Nature. 2020 Nov;587(7833):258-263 - PubMed
  22. Neuron. 2020 Sep 9;107(5):909-923.e6 - PubMed
  23. Nature. 2018 Mar 29;555(7698):617-622 - PubMed
  24. J Neurophysiol. 2000 Apr;83(4):2239-59 - PubMed
  25. Front Neuroanat. 2014 Apr 22;8:21 - PubMed
  26. Curr Opin Neurobiol. 2019 Jun;56:167-174 - PubMed
  27. J Neurosci. 2020 Nov 11;40(46):8816-8830 - PubMed
  28. Neuron. 2018 Dec 19;100(6):1491-1503.e3 - PubMed
  29. Cell Rep. 2019 Aug 6;28(6):1623-1634.e4 - PubMed
  30. Sci Adv. 2020 Sep 2;6(36): - PubMed
  31. Nat Rev Neurosci. 2013 Jul;14(7):502-11 - PubMed
  32. Neuron. 2006 Apr 20;50(2):277-89 - PubMed
  33. Cell Rep. 2020 May 12;31(6):107595 - PubMed
  34. Cell. 2009 Oct 16;139(2):267-84 - PubMed
  35. Nat Neurosci. 2013 Feb;16(2):174-82 - PubMed
  36. Nature. 2019 Jan;565(7737):86-90 - PubMed
  37. Nature. 2020 Apr;580(7803):376-380 - PubMed
  38. J Neurophysiol. 1994 May;71(5):1646-60 - PubMed
  39. Chem Senses. 2008 Jan;33(1):3-15 - PubMed
  40. Neuron. 2020 Jun 17;106(6):927-939.e5 - PubMed
  41. Pain. 1988 Dec;35(3):327-339 - PubMed
  42. J Neurophysiol. 1988 Apr;59(4):1204-19 - PubMed
  43. J Neurophysiol. 1996 May;75(5):2099-116 - PubMed
  44. Science. 1997 Oct 10;278(5336):275-9 - PubMed
  45. Trends Neurosci. 2018 May;41(5):280-293 - PubMed
  46. Proc Natl Acad Sci U S A. 2007 Aug 14;104(33):13525-30 - PubMed
  47. Science. 2016 Nov 4;354(6312):578-584 - PubMed
  48. Curr Opin Physiol. 2019 Oct;11:109-115 - PubMed

Publication Types

Grant support