Display options
Share it on

Invest New Drugs. 2021 Aug;39(4):1057-1071. doi: 10.1007/s10637-021-01084-8. Epub 2021 Feb 23.

LY3022855, an anti-colony stimulating factor-1 receptor (CSF-1R) monoclonal antibody, in patients with advanced solid tumors refractory to standard therapy: phase 1 dose-escalation trial.

Investigational new drugs

Afshin Dowlati, R Donald Harvey, Richard D Carvajal, Omid Hamid, Samuel J Klempner, John Sae Wook Kauh, Daniel A Peterson, Danni Yu, Sonya C Chapman, Anna M Szpurka, Michelle Carlsen, Tonya Quinlan, Robert Wesolowski

Affiliations

  1. Department of Medicine Division of Hematology and Oncology, University Hospitals Seidman Cancer Center and Case Western Reserve University, Cleveland, OH, USA.
  2. Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA.
  3. Department of Medicine, Division of Hematology/Oncology, Columbia University, College of Physicians and Surgeons New York, New York, NY, USA.
  4. Department of Hematology/Oncology, The Angeles Clinic and Research Institute, Cedars-Sinai Affiliate, Los Angeles, CA, USA.
  5. Department of Medicine and Oncology, Massachusetts General Hospital, Boston, MA, USA.
  6. Medical Oncology, Hutchison MediPharma Inc., Florham Park, NJ, USA.
  7. Eli Lilly and Company, Indianapolis, IN, USA.
  8. Eli Lilly and Company, Windlesham, Surrey, UK.
  9. Internal Medicine, Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, 1310D Lincoln Tower, 1800 Cannon Drive, Columbus, OH, 43210, USA. [email protected].

PMID: 33624233 DOI: 10.1007/s10637-021-01084-8

Abstract

Background Tumor-associated macrophages (TAMs) promote tumor growth, metastasis, and therapeutic resistance via colony-stimulating factor-1 (CSF-1), acting through CSF-1 receptor (CSF-1R) signaling. This phase 1 study determined the safety, tolerability, pharmacokinetics-pharmacodynamics, immunogenicity, and efficacy of the anti-CSF-1R antibody LY3022855 in solid tumors. Methods Patients with advanced solid tumors refractory to standard therapy were enrolled and treated in 2 dosing cohorts: weight-based (part A) and non-weight-based (part B). Part A patients were assigned to intravenous (IV) dose-escalation cohorts: 2.5 mg/kg once per week (QW), 0.3 mg/kg QW, 0.6 mg/kg QW, 1.25 mg/kg once every 2 weeks (Q2W) and 1.25 mg/kg QW doses of LY3022855. Non-weight-based doses in part B were 100 mg and 150 mg IV QW. Results Fifty-two patients (mean age 58.6 ± 10.4 years) were treated with ≥1 dose of LY3022855 (range: 4-6). Five dose-limiting toxicities (left ventricular dysfunction, anemia, pancreatitis, rhabdomyolysis, and acute kidney injury) occurred in 4 patients. The non-weight-based 100 mg QW dose was established as the RP2D. The most common treatment-emergent adverse events were increase in liver function variables, fatigue, nausea, vomiting, diarrhea, anorexia, pyrexia, increased lipase, amylase, and lactate dehydrogenase. Clearance decreased with increasing dose and weight-based dosing had minimal effect on pharmacokinetics. Serum CSF-1, and IL-34 levels increased at higher doses and more frequent dosing, whereas TAMs and CD14dimCD16bright levels decreased. Three patients achieved stable disease. No responses were seen. Conclusions LY3022855 was well tolerated and showed dose-dependent pharmacokinetics-pharmacodynamics and limited clinical activity in a heterogenous solid tumor population. ClinicalTrials.gov ID NCT01346358 (Registration Date: May 3, 2011).

© 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature.

Keywords: Advanced solid tumor; CSF-1; CSF-1R inhibitor; IL-34; Immunotherapy; LY3022855; Tumor -associated macrophages

References

  1. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. https://doi.org/10.1016/j.cell.2011.02.013 - PubMed
  2. Cassetta L, Kitamura T (2018) Targeting tumor-associated macrophages as a potential strategy to enhance the response to immune checkpoint inhibitors. Front Cell Dev Biol 6:38. https://doi.org/10.3389/fcell.2018.00038 - PubMed
  3. Papadopoulos KP, Gluck L, Martin LP, Olszanski AJ, Tolcher AW, Ngarmchamnanrith G, Rasmussen E, Amore BM, Nagorsen D, Hill JS, Stephenson J Jr (2017) First-in-human study of AMG 820, a monoclonal anti-Colony-stimulating factor 1 receptor antibody, in patients with advanced solid tumors. Clin Cancer Res 23(19):5703–5710. https://doi.org/10.1158/1078-0432.CCR-16-3261 - PubMed
  4. Cannarile MA, Weisser M, Jacob W, Jegg AM, Ries CH, Ruttinger D (2017) Colony-stimulating factor 1 receptor (CSF1R) inhibitors in cancer therapy. J Immunother Cancer 5(1):53. https://doi.org/10.1186/s40425-017-0257-y - PubMed
  5. Lin H, Lee E, Hestir K, Leo C, Huang M, Bosch E, Halenbeck R, Wu G, Zhou A, Behrens D, Hollenbaugh D, Linnemann T, Qin M, Wong J, Chu K, Doberstein SK, Williams LT (2008) Discovery of a cytokine and its receptor by functional screening of the extracellular proteome. Science 320(5877):807–811. https://doi.org/10.1126/science.1154370 - PubMed
  6. Pixley FJ, Stanley ER (2004) CSF-1 regulation of the wandering macrophage: complexity in action. Trends Cell Biol 14(11):628–638. https://doi.org/10.1016/j.tcb.2004.09.016 - PubMed
  7. DeNardo DG, Brennan DJ, Rexhepaj E, Ruffell B, Shiao SL, Madden SF, Gallagher WM, Wadhwani N, Keil SD, Junaid SA, Rugo HS, Hwang ES, Jirstrom K, West BL, Coussens LM (2011) Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov 1(1):54–67. https://doi.org/10.1158/2159-8274.CD-10-0028 - PubMed
  8. Subimerb C, Pinlaor S, Lulitanond V, Khuntikeo N, Okada S, McGrath MS, Wongkham S (2010) Circulating CD14(+) CD16(+) monocyte levels predict tissue invasive character of cholangiocarcinoma. Clin Exp Immunol 161(3):471–479. https://doi.org/10.1111/j.1365-2249.2010.04200.x - PubMed
  9. Zhu Y, Knolhoff BL, Meyer MA, Nywening TM, West BL, Luo J, Wang-Gillam A, Goedegebuure SP, Linehan DC, DeNardo DG (2014) CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res 74(18):5057–5069. https://doi.org/10.1158/0008-5472.CAN-13-3723 - PubMed
  10. ClinicalTrials.Gov. A Study of ARRY-382 in Patients With Selected Advanced or Metastatic Cancers. Available on https://clinicaltrials.gov/ct2/show/NCT01316822 . Accessed on 5 May 2020 - PubMed
  11. ClinicalTrials.gov. Phase 1 Study of PLX7486 as Single Agent in Patients With Advanced Solid Tumors. Available on https://clinicaltrials.gov/ct2/show/NCT01804530 . Accessed on April 4 2020 - PubMed
  12. ClinicalTrials.gov. Phase I/II Study of BLZ945 Single Agent or BLZ945 in Combination With PDR001 in Advanced Solid Tumors. Available on https://clinicaltrials.gov/ct2/show/NCT02829723 . Accessed on April 4 2020 - PubMed
  13. Gomez-Roca CA, Italiano A, Le Tourneau C, Cassier PA, Toulmonde M, D'Angelo SP, Campone M, Weber KL, Loirat D, Cannarile MA, Jegg AM, Ries C, Christen R, Meneses-Lorente G, Jacob W, Klaman I, Ooi CH, Watson C, Wonde K, Reis B, Michielin F, Ruttinger D, Delord JP, Blay JY (2019) Phase I study of emactuzumab single agent or in combination with paclitaxel in patients with advanced/metastatic solid tumors reveals depletion of immunosuppressive M2-like macrophages. Ann Oncol 30(8):1381–1392. https://doi.org/10.1093/annonc/mdz163 - PubMed
  14. ClinicalTrials.gov. A Study of Cabiralzumab Given by Itself or With Nivolumab in Advanced Cancer or Cancer That Has Spread. Available on https://clinicaltrials.gov/ct2/show/NCT03158272 . Accessed on April 4 2020 - PubMed
  15. ClinicalTrials.gov. Phase Ib/II Study of MCS110 in Combination With PDR001 in Patients With Advanced Malignancies. Available on https://clinicaltrials.gov/ct2/show/NCT02807844 . Accessed on April 4 2020 - PubMed
  16. Insight A IMC.CS4. Available on https://adisinsight.springer.com/drugs/800034411 . Accessed 5 May 2020 - PubMed
  17. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, Dancey J, Arbuck S, Gwyther S, Mooney M, Rubinstein L, Shankar L, Dodd L, Kaplan R, Lacombe D, Verweij J (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45(2):228–247. https://doi.org/10.1016/j.ejca.2008.10.026 - PubMed
  18. U.S. Department of Health and Human Services. Common Terminology Criteria for Adverse Events (CTCAE) Version 4.0. Available on https://evs.nci.nih.gov/ftp1/CTCAE/CTCAE_4.03/Archive/CTCAE_4.0_2009-05-29_QuickReference_8.5x11.pdf . Accesssed 16 mar 2020 - PubMed
  19. United States Food and Drug Administration. Immunogenicity Assessment for Therapeutic Protein Products. Available at https://www.fda.gov/media/85017/download . Accessed on October 1 2020 - PubMed
  20. Dowlati A, Rugo H, Harvey D, Kudchadkar R, Carvajal R, Manji G, Hamid O, Klempner S, Tang S, Yu D, Kauh J, Schaer D, Tate S, Wesolowski R (2017) A phase I study of LY3022855, a colony-stimulating factor-1 receptor (CSF-1R) inhibitor, in patients (pts) with advanced solid tumors. J Clin Oncol 35:2523. https://doi.org/10.1200/JCO.2017.35.15_suppl.2523 - PubMed
  21. Autio K, Klebanoff C, Schaer D, Kauh J, Slovin S, Blinder V, Comen E, Danila D, Hoffman D, Kang S, McAndrew P, Modi S, Morris M, Rathkopf D, Sanford R, Tate S, Yu D, McArthur H (2019) Phase 1 study of LY3022855, a colony-stimulating factor-1 receptor (CSF-1R) inhibitor, in patients with metastatic breast cancer (MBC) or metastatic castration-resistant prostate cancer (MCRPC). J Clin Oncol 37:2548. https://doi.org/10.1200/JCO.2019.37.15_suppl.2548 - PubMed
  22. Lee JH, Chen TW, Hsu CH, Yen YH, Yang JC, Cheng AL, Sasaki SI, Chiu LL, Sugihara M, Ishizuka T, Oguma T, Tajima N, Lin CC (2020) A phase I study of pexidartinib, a colony-stimulating factor 1 receptor inhibitor, in Asian patients with advanced solid tumors. Investig New Drugs 38(1):99–110. https://doi.org/10.1007/s10637-019-00745-z - PubMed
  23. Wesolowski R, Sharma N, Reebel L, Rodal MB, Peck A, West BL, Marimuthu A, Severson P, Karlin DA, Dowlati A, Le MH, Coussens LM, Rugo HS (2019) Phase Ib study of the combination of pexidartinib (PLX3397), a CSF-1R inhibitor, and paclitaxel in patients with advanced solid tumors. Ther Adv Med Oncol 11:1758835919854238. https://doi.org/10.1177/1758835919854238 - PubMed
  24. von Tresckow B, Morschhauser F, Ribrag V, Topp MS, Chien C, Seetharam S, Aquino R, Kotoulek S, de Boer CJ, Engert A (2015) An open-label, multicenter, phase I/II study of JNJ-40346527, a CSF-1R inhibitor, in patients with relapsed or refractory Hodgkin lymphoma. Clin Cancer Res 21(8):1843–1850. https://doi.org/10.1158/1078-0432.CCR-14-1845 - PubMed
  25. Ovacik M, Lin K (2018) Tutorial on monoclonal antibody pharmacokinetics and its considerations in early development. Clin Transl Sci 11(6):540–552. https://doi.org/10.1111/cts.12567 - PubMed
  26. Hendrikx J, Haanen J, Voest EE, Schellens JHM, Huitema ADR, Beijnen JH (2017) Fixed dosing of monoclonal antibodies in oncology. Oncologist 22(10):1212–1221. https://doi.org/10.1634/theoncologist.2017-0167 - PubMed
  27. Bai S, Jorga K, Xin Y, Jin D, Zheng Y, Damico-Beyer LA, Gupta M, Tang M, Allison DE, Lu D, Zhang Y, Joshi A, Dresser MJ (2012) A guide to rational dosing of monoclonal antibodies. Clin Pharmacokinet 51(2):119–135. https://doi.org/10.2165/11596370-000000000-00000 - PubMed
  28. Ries CH, Cannarile MA, Hoves S, Benz J, Wartha K, Runza V, Rey-Giraud F, Pradel LP, Feuerhake F, Klaman I, Jones T, Jucknischke U, Scheiblich S, Kaluza K, Gorr IH, Walz A, Abiraj K, Cassier PA, Sica A, Gomez-Roca C, de Visser KE, Italiano A, Le Tourneau C, Delord JP, Levitsky H, Blay JY, Ruttinger D (2014) Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy. Cancer Cell 25(6):846–859. https://doi.org/10.1016/j.ccr.2014.05.016 - PubMed
  29. Pradel LP, Ooi CH, Romagnoli S, Cannarile MA, Sade H, Ruttinger D, Ries CH (2016) Macrophage susceptibility to Emactuzumab (RG7155) treatment. Mol Cancer Ther 15(12):3077–3086. https://doi.org/10.1158/1535-7163.MCT-16-0157 - PubMed
  30. Kong LQ, Zhu XD, Xu HX, Zhang JB, Lu L, Wang WQ, Zhang QB, Wu WZ, Wang L, Fan J, Tang ZY, Sun HC (2013) The clinical significance of the CD163+ and CD68+ macrophages in patients with hepatocellular carcinoma. PLoS One 8(3):e59771. https://doi.org/10.1371/journal.pone.0059771 - PubMed
  31. Medrek C, Ponten F, Jirstrom K, Leandersson K (2012) The presence of tumor associated macrophages in tumor stroma as a prognostic marker for breast cancer patients. BMC Cancer 12:306. https://doi.org/10.1186/1471-2407-12-306 - PubMed
  32. Minami K, Hiwatashi K, Ueno S, Sakoda M, Iino S, Okumura H, Hashiguchi M, Kawasaki Y, Kurahara H, Mataki Y, Maemura K, Shinchi H, Natsugoe S (2018) Prognostic significance of CD68, CD163 and Folate receptor-beta positive macrophages in hepatocellular carcinoma. Exp Ther Med 15(5):4465–4476. https://doi.org/10.3892/etm.2018.5959 - PubMed
  33. Ni C, Yang L, Xu Q, Yuan H, Wang W, Xia W, Gong D, Zhang W, Yu K (2019) CD68- and CD163-positive tumor infiltrating macrophages in non-metastatic breast cancer: a retrospective study and meta-analysis. J Cancer 10(19):4463–4472. https://doi.org/10.7150/jca.33914 - PubMed
  34. Gyori D, Lim EL, Grant FM, Spensberger D, Roychoudhuri R, Shuttleworth SJ, Okkenhaug K, Stephens LR, Hawkins PT (2018) Compensation between CSF1R+ macrophages and Foxp3+ Treg cells drives resistance to tumor immunotherapy. JCI Insight 3(11). https://doi.org/10.1172/jci.insight.120631 - PubMed
  35. Kumar V, Donthireddy L, Marvel D, Condamine T, Wang F, Lavilla-Alonso S, Hashimoto A, Vonteddu P, Behera R, Goins MA, Mulligan C, Nam B, Hockstein N, Denstman F, Shakamuri S, Speicher DW, Weeraratna AT, Chao T, Vonderheide RH, Languino LR, Ordentlich P, Liu Q, Xu X, Lo A, Pure E, Zhang C, Loboda A, Sepulveda MA, Snyder LA, Gabrilovich DI (2017) Cancer-associated fibroblasts neutralize the anti-tumor effect of CSF1 receptor blockade by inducing PMN-MDSC infiltration of tumors. Cancer Cell 32(5):654–668 e655. https://doi.org/10.1016/j.ccell.2017.10.005 - PubMed
  36. McKane A, Sima C, Ramanathan RK, Jameson G, Mast C, White E, Fleck S, Downhour M, Von Hoff DD, Weiss GJ (2013) Determinants of patient screen failures in phase 1 clinical trials. Investig New Drugs 31(3):774–779. https://doi.org/10.1007/s10637-012-9894-7 - PubMed

Publication Types