Display options
Share it on

Autophagy. 2021 Nov;17(11):3740-3752. doi: 10.1080/15548627.2021.1896906. Epub 2021 Mar 11.

Trehalose causes low-grade lysosomal stress to activate TFEB and the autophagy-lysosome biogenesis response.

Autophagy

Se-Jin Jeong, Jeremiah Stitham, Trent D Evans, Xiangyu Zhang, Astrid Rodriguez-Velez, Yu-Sheng Yeh, Joan Tao, Koki Takabatake, Slava Epelman, Irfan J Lodhi, Joel D Schilling, Brian J DeBosch, Abhinav Diwan, Babak Razani

Affiliations

  1. Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA.
  2. Department of Medicine, Division of Endocrinology, Metabolism, Lipid Research, Washington University School of Medicine, St. Louis, MO, USA.
  3. Peter Munk Cardiac Center, Ted Rogers Centre for Heart Failure Research and the Toronto General Hospital Research Institute, University of Toronto, Toronto, ON, Canada.
  4. Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA.
  5. Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.
  6. John Cochran VA Medical Center, St. Louis, MO, USA.

PMID: 33706671 PMCID: PMC8632292 DOI: 10.1080/15548627.2021.1896906

Abstract

The autophagy-lysosome system is an important cellular degradation pathway that recycles dysfunctional organelles and cytotoxic protein aggregates. A decline in this system is pathogenic in many human diseases including neurodegenerative disorders, fatty liver disease, and atherosclerosis. Thus there is intense interest in discovering therapeutics aimed at stimulating the autophagy-lysosome system. Trehalose is a natural disaccharide composed of two glucose molecules linked by a ɑ-1,1-glycosidic bond with the unique ability to induce cellular macroautophagy/autophagy and with reported efficacy on mitigating several diseases where autophagy is dysfunctional. Interestingly, the mechanism by which trehalose induces autophagy is unknown. One suggested mechanism is its ability to activate TFEB (transcription factor EB), the master transcriptional regulator of autophagy-lysosomal biogenesis. Here we describe a potential mechanism involving direct trehalose action on the lysosome. We find trehalose is endocytically taken up by cells and accumulates within the endolysosomal system. This leads to a low-grade lysosomal stress with mild elevation of lysosomal pH, which acts as a potent stimulus for TFEB activation and nuclear translocation. This process appears to involve inactivation of MTORC1, a known negative regulator of TFEB which is sensitive to perturbations in lysosomal pH. Taken together, our data show the trehalose can act as a weak inhibitor of the lysosome which serves as a trigger for TFEB activation. Our work not only sheds light on trehalose action but suggests that mild alternation of lysosomal pH can be a novel method of inducing the autophagy-lysosome system.

Keywords: Endocytosis; MTORC1; TFEB; lysosome; trehalose

References

  1. Biol Reprod. 2017 Jan 1;97(6):892-901 - PubMed
  2. Molecules. 2008 Aug 21;13(8):1773-816 - PubMed
  3. Sci Signal. 2012 Jun 12;5(228):ra42 - PubMed
  4. Cryobiology. 2005 Aug;51(1):15-28 - PubMed
  5. Nat Rev Mol Cell Biol. 2009 Jul;10(7):458-67 - PubMed
  6. Nature. 2009 Apr 30;458(7242):1131-5 - PubMed
  7. J Biol Chem. 1990 Apr 15;265(11):6382-8 - PubMed
  8. Nat Commun. 2017 Jun 07;8:15750 - PubMed
  9. J Cell Biol. 2010 Feb 22;188(4):547-63 - PubMed
  10. J Biol Chem. 2003 Jul 18;278(29):26458-65 - PubMed
  11. Nature. 2003 Jan 23;421(6921):373-9 - PubMed
  12. Nat Commun. 2018 Aug 17;9(1):3312 - PubMed
  13. Science. 2018 Mar 16;359(6381):1277-1283 - PubMed
  14. Soft Matter. 2018 Nov 7;14(43):8792-8802 - PubMed
  15. Sci Rep. 2016 Dec 06;6:38586 - PubMed
  16. Arterioscler Thromb Vasc Biol. 2014 Sep;34(9):1942-1952 - PubMed
  17. Cell. 2007 Dec 14;131(6):1149-63 - PubMed
  18. Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):15898-903 - PubMed
  19. J Am Coll Cardiol. 2018 May 8;71(18):1999-2010 - PubMed
  20. Nat Cell Biol. 2013 Jun;15(6):647-58 - PubMed
  21. Nat Metab. 2020 Jan;2(1):110-125 - PubMed
  22. Nat Rev Neurol. 2018 Jan;14(1):22-39 - PubMed
  23. Cell Metab. 2012 Apr 4;15(4):534-44 - PubMed
  24. Nature. 2006 Oct 19;443(7113):774-9 - PubMed
  25. EMBO J. 2012 Mar 7;31(5):1095-108 - PubMed
  26. Food Chem Toxicol. 2002 Jul;40(7):871-98 - PubMed
  27. J Clin Invest. 2014 Aug;124(8):3311-24 - PubMed
  28. Science. 2011 Nov 4;334(6056):678-83 - PubMed
  29. Cell. 2011 Nov 11;147(4):728-41 - PubMed
  30. Autophagy. 2019 Apr;15(4):631-651 - PubMed
  31. Nat Commun. 2017 Feb 06;8:14338 - PubMed
  32. Autophagy. 2013 Sep;9(9):1308-20 - PubMed
  33. Nature. 2006 Jun 15;441(7095):885-9 - PubMed
  34. Cell. 2017 Mar 9;168(6):960-976 - PubMed
  35. Autophagy. 2018;14(11):1959-1975 - PubMed
  36. Nat Med. 2004 Feb;10(2):148-54 - PubMed
  37. Sci Signal. 2016 Feb 23;9(416):ra21 - PubMed
  38. Nat Commun. 2017 May 10;8:15144 - PubMed
  39. Proc Natl Acad Sci U S A. 2009 Feb 24;106(8):2770-5 - PubMed
  40. J Biol Chem. 2007 Feb 23;282(8):5641-52 - PubMed
  41. Clin Exp Immunol. 2020 Feb;199(2):150-162 - PubMed
  42. EMBO J. 2011 Aug 31;30(17):3481-500 - PubMed
  43. Biomacromolecules. 2013 Aug 12;14(8):2561-9 - PubMed
  44. Nat Commun. 2020 May 18;11(1):2461 - PubMed
  45. Neurobiol Dis. 2010 Sep;39(3):423-38 - PubMed
  46. Science. 2011 Jun 17;332(6036):1429-33 - PubMed
  47. Methods Mol Biol. 2015;1266:29-53 - PubMed
  48. Nat Rev Mol Cell Biol. 2007 Aug;8(8):622-32 - PubMed
  49. Annu Rev Physiol. 2012;74:69-86 - PubMed
  50. Protein Sci. 2009 Jan;18(1):24-36 - PubMed

Publication Types

Grant support