Display options
Share it on

Regen Ther. 2021 Feb 24;16:81-89. doi: 10.1016/j.reth.2021.02.001. eCollection 2021 Mar.

Bile duct reconstruction using scaffold-free tubular constructs created by Bio-3D printer.

Regenerative therapy

Takashi Hamada, Anna Nakamura, Akihiko Soyama, Yusuke Sakai, Takayuki Miyoshi, Shun Yamaguchi, Masaaki Hidaka, Takanobu Hara, Tota Kugiyama, Mitsuhisa Takatsuki, Akihide Kamiya, Koichi Nakayama, Susumu Eguchi

Affiliations

  1. Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Japan.
  2. Department of Regenerative Medicine and Biomedical Engineering, Faculty of Medicine, Saga University, Japan.
  3. Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, Japan.
  4. Department of Molecular Life Sciences, Tokai University School of Medicine, Japan.

PMID: 33732817 PMCID: PMC7921183 DOI: 10.1016/j.reth.2021.02.001

Abstract

INTRODUCTION: Biliary strictures after bile duct injury or duct-to-duct biliary reconstruction are serious complications that markedly reduce patients' quality of life because their treatment involves periodic stent replacements. This study aimed to create a scaffold-free tubular construct as an interposition graft to treat biliary complications.

METHODS: Scaffold-free tubular constructs of allogeneic pig fibroblasts, that is, fibroblast tubes, were created using a Bio-3D Printer and implanted into pigs as interposition grafts for duct-to-duct biliary reconstruction.

RESULTS: Although the fibroblast tube was weaker than the native bile duct, it was sufficiently strong to enable suturing. The pigs' serum hepatobiliary enzyme levels remained stable during the experimental period. Micro-computed tomography showed no biliary strictures, no biliary leakages, and no intrahepatic bile duct dilations. The tubular structure was retained in all resected specimens, and the fibroblasts persisted at the graft sites. Immunohistochemical analyses revealed angiogenesis in the fibroblast tube and absence of extensions of the biliary epithelium into the fibroblast tube's lumen.

CONCLUSIONS: This study's findings demonstrated successful reconstruction of the extrahepatic bile duct with a scaffold-free tubular construct created from pig fibroblasts using a novel Bio-3D Printer. This construct could provide a novel regenerative treatment for patients with hepatobiliary diseases.

© 2021 The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V.

Keywords: ALP, alkaline phosphatase; ALT, alanine aminotransferase; AST, aspartate aminotransferase; Artificial bile duct; Bio-3D printer; Cr, creatinine; DMEM, Dulbecco's Modified Eagle's Medium; EDTA, trypsin-ethylenediaminetetraacetic acid; FBS, fetal bovine serum; IBDI, iatrogenic bile duct injury; KCL, potassium chloride; LDLT, living donor liver transplantation; PBS, phosphate-buffered saline; QOL, quality of life; Reconstruction; Scaffold-free tubular construct; T-Bil, total bilirubin; γ-GTP, γ-glutamyl transpeptidase

Conflict of interest statement

K. Nakayama is a cofounder and shareholder of Cyfuse Biomedical KK. The other authors declare no conflicts of interest.

References

  1. Tissue Eng Part A. 2015 May;21(9-10):1642-53 - PubMed
  2. PLoS One. 2015 Sep 01;10(9):e0136681 - PubMed
  3. World J Gastroenterol. 2006 Jun 14;12(22):3496-511 - PubMed
  4. Am J Transplant. 2013 Feb;13(2):253-65 - PubMed
  5. Liver Transpl. 2011 Jan;17(1):47-52 - PubMed
  6. J Vis Exp. 2013 Jul 07;(77):e3779 - PubMed
  7. Clin Gastroenterol Hepatol. 2009 Sep;7(9):1013-8; quiz 915 - PubMed
  8. Eur Surg Res. 2016;56(1-2):61-75 - PubMed
  9. J Tissue Eng Regen Med. 2017 Apr;11(4):966-976 - PubMed
  10. Arch Bone Jt Surg. 2018 Mar;6(2):90-99 - PubMed
  11. Biomaterials. 2018 Jun;167:1-14 - PubMed
  12. Biomaterials. 2015 Jun;52:452-62 - PubMed
  13. Vet Immunol Immunopathol. 2002 Sep 25;88(3-4):131-48 - PubMed
  14. Am J Transplant. 2005 Jun;5(6):1541-7 - PubMed
  15. Transpl Int. 2005 May;17(12):841-7 - PubMed
  16. J Gastroenterol Hepatol. 2013 Aug;28 Suppl 1:26-32 - PubMed
  17. Surg Endosc. 2003 Sep;17(9):1362-7 - PubMed
  18. Am J Pathol. 1997 Aug;151(2):317-22 - PubMed
  19. Adv Healthc Mater. 2019 Apr;8(7):e1800983 - PubMed
  20. Visc Med. 2017 Jun;33(3):184-190 - PubMed
  21. Gut. 1983 Aug;24(8):756-60 - PubMed
  22. PLoS One. 2019 Mar 8;14(3):e0211339 - PubMed
  23. Nat Commun. 2019 May 21;10(1):2244 - PubMed
  24. CMAJ. 2012 May 15;184(8):884-92 - PubMed
  25. Tissue Eng. 2006 Dec;12(12):3307-39 - PubMed
  26. Transpl Int. 2011 Apr;24(4):379-92 - PubMed
  27. ACS Appl Mater Interfaces. 2017 Apr 12;9(14):12290-12298 - PubMed
  28. Eur Cell Mater. 2003 May 20;5:1-16; discussion 16 - PubMed
  29. J Hepatobiliary Pancreat Sci. 2011 Mar;18(2):170-5 - PubMed
  30. Semin Immunol. 2008 Apr;20(2):109-16 - PubMed
  31. World J Gastroenterol. 2016 Feb 21;22(7):2326-35 - PubMed
  32. Tissue Eng Part B Rev. 2017 Jun;23(3):237-244 - PubMed
  33. J Gastrointest Surg. 2012 Mar;16(3):529-34 - PubMed
  34. Trends Biotechnol. 2013 Feb;31(2):108-15 - PubMed
  35. Transplant Rev (Orlando). 2017 Jul;31(3):207-217 - PubMed
  36. Int J Stem Cells. 2019 Jul 31;12(2):183-194 - PubMed
  37. Am J Gastroenterol. 1999 Feb;94(2):480-3 - PubMed
  38. Liver Transpl. 2018 Aug;24(8):1050-1061 - PubMed
  39. Liver Transpl. 2017 Dec;23(12):1519-1530 - PubMed
  40. Pharmaceuticals (Basel). 2017 Dec 12;10(4): - PubMed
  41. J Orthop Surg Res. 2014 Oct 14;9:98 - PubMed
  42. PLoS One. 2017 Feb 13;12(2):e0171448 - PubMed

Publication Types