Display options
Share it on

Am J Trop Med Hyg. 2021 Mar 22; doi: 10.4269/ajtmh.20-0963. Epub 2021 Mar 22.

Environmental, Metabolic, and Inflammatory Factors Converge in the Pathogenesis of Moderate Acute Malnutrition in Children: An Observational Cohort Study.

The American journal of tropical medicine and hygiene

Grace T Patterson, Dennis Manthi, Finley Osuna, Alfred Muia, Beatrice Olack, Margaret Mbuchi, Omar A Saldarriaga, Linet Ouma, Mary Inziani, Xiaoying Yu, Phelgona Otieno, Peter C Melby

Affiliations

  1. 1Department of Internal Medicine and Infectious Disease, University of Texas Medical Branch, Galveston, Texas.
  2. 2Centre for Clinical Research, Kenya Medical Research Institute, Nairobi, Kenya.
  3. 3Department of Preventative Medicine and Population Health, University of Texas Medical Branch, Galveston, Texas.

PMID: 33755580 PMCID: PMC8103470 DOI: 10.4269/ajtmh.20-0963

Abstract

Acute malnutrition affects more than 50 million children worldwide. These children are at an increased risk of morbidity and mortality from infectious disease. However, the pathogenesis of acute malnutrition and mechanisms underlying the increased risk and poor outcomes from infection are not well understood. Our objective was to identify differences in inflammation and inflammatory responses between children with moderate acute malnutrition (MAM) and healthy controls (HCs), and search for environmental, pathophysiological, and metabolic factors that may influence this response. Sixteen children with MAM and 16 HCs aged 18-36 months were studied in Nairobi, Kenya. None of the children had symptoms of an infectious disease (fever, diarrhea, or cough) in the 2 weeks before enrollment and sample collection. Demographic and health data were provided by their primary caregivers. Blood samples were collected to measure various biomarkers and the response to an inflammatory stimulus. Children with MAM were more frequently from households with contaminated water, crowding, and unstable income sources. They also had increases in basal inflammation, circulating bacterial lipopolysaccharide (LPS), markers of intestinal damage, and an exaggerated whole blood inflammatory response to LPS. Metabolic changes in children with MAM led to increased plasma levels of long-chain fatty acids, which were found to contribute to the pro-inflammatory state. These exploratory findings suggest convergence of multiple factors to promote dysregulated inflammatory responses and prompt several mechanistic hypotheses that can be pursued to better understand the pathogenesis of MAM.

References

  1. J Nutr. 2013 Feb;143(2):215-20 - PubMed
  2. Lancet. 2008 Jan 19;371(9608):243-60 - PubMed
  3. J Biol Chem. 2001 May 18;276(20):16683-9 - PubMed
  4. J Nutr. 2016 Dec;146(12):2436-2444 - PubMed
  5. PLoS One. 2013 Jul 17;8(7):e68699 - PubMed
  6. J Endotoxin Res. 2005;11(4):225-9 - PubMed
  7. BMC Infect Dis. 2006 Nov 07;6:160 - PubMed
  8. Br J Nutr. 2018 May;119(9):1039-1046 - PubMed
  9. PLoS One. 2014 Aug 25;9(8):e105017 - PubMed
  10. Arch Pediatr Adolesc Med. 2012 May;166(5):444-51 - PubMed
  11. J Biomed Inform. 2009 Apr;42(2):377-81 - PubMed
  12. Am J Physiol Endocrinol Metab. 2014 Jun 15;306(12):E1378-87 - PubMed
  13. J Nutr. 2009 Jun;139(6):1073-81 - PubMed
  14. JAMA. 2009 Jan 21;301(3):277-85 - PubMed
  15. BMC Public Health. 2013;13 Suppl 3:S23 - PubMed
  16. Clin Microbiol Rev. 2017 Oct;30(4):919-971 - PubMed
  17. N Engl J Med. 2020 Jul 23;383(4):321-333 - PubMed
  18. Food Nutr Bull. 2014 Jun;35(2 Suppl):S64-70 - PubMed
  19. Gastroenterol Clin North Am. 2018 Dec;47(4):813-827 - PubMed
  20. EBioMedicine. 2017 Mar;17:57-66 - PubMed
  21. Eur J Endocrinol. 2003 Mar;148(3):293-300 - PubMed
  22. PLoS Negl Trop Dis. 2017 Jul 24;11(7):e0005798 - PubMed
  23. Am J Clin Nutr. 2012 Oct;96(4):911-6 - PubMed
  24. J Immunol. 2013 Oct 15;191(8):4337-47 - PubMed
  25. PLoS Negl Trop Dis. 2018 Jan 19;12(1):e0006205 - PubMed
  26. Nature. 2014 Jun 19;510(7505):417-21 - PubMed
  27. PLoS One. 2018 Mar 2;13(3):e0192092 - PubMed
  28. Clin Nutr ESPEN. 2016 Feb;11:e40-e46 - PubMed
  29. J Neurochem. 2012 Mar;120(6):1060-71 - PubMed
  30. Nutrients. 2018 Mar 30;10(4): - PubMed
  31. Pediatr Infect Dis J. 2017 Dec;36(12):1177-1185 - PubMed
  32. Food Nutr Bull. 2015 Mar;36(1 Suppl):S3-8 - PubMed
  33. Nutr J. 2017 Jul 13;16(1):44 - PubMed
  34. BMJ Open. 2015 Feb 12;5(2):e005180 - PubMed
  35. J Pediatr Gastroenterol Nutr. 2017 Nov;65(5):491-495 - PubMed
  36. Arch Immunol Ther Exp (Warsz). 2012 Feb;60(1):13-8 - PubMed
  37. Am J Trop Med Hyg. 2019 Nov;101(5):1009-1017 - PubMed
  38. Ann N Y Acad Sci. 2014 Jan;1308:118-28 - PubMed
  39. J Biomed Inform. 2019 Jul;95:103208 - PubMed
  40. J Pediatr Gastroenterol Nutr. 2016 Nov;63(5):453-459 - PubMed
  41. United European Gastroenterol J. 2018 Mar;6(2):181-191 - PubMed
  42. World J Gastroenterol. 2010 Nov 14;16(42):5272-9 - PubMed
  43. J Immunol. 2009 Aug 15;183(4):2818-26 - PubMed
  44. J Periodontal Res. 2014 Feb;49(1):1-9 - PubMed
  45. Public Health Nutr. 2013 Sep;16(9):1703-18 - PubMed
  46. Am J Clin Nutr. 2015 Mar;101(3):632-45 - PubMed
  47. Gut. 1994 Jan;35(1 Suppl):S28-34 - PubMed
  48. Eur J Nutr. 2018 Apr;57(3):1003-1013 - PubMed

Publication Types

Grant support