Display options
Share it on

Front Immunol. 2021 Feb 16;12:635558. doi: 10.3389/fimmu.2021.635558. eCollection 2021.

The Promise of Aggregation-Induced Emission Luminogens for Detecting COVID-19.

Frontiers in immunology

Zongwei Liu, Ting Meng, Xiaofang Tang, Ran Tian, Weijiang Guan

Affiliations

  1. Department of Respiratory Medicine, Lianyungang Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Lianyungang, China.
  2. The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China.
  3. State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, China.
  4. Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.

PMID: 33679789 PMCID: PMC7928409 DOI: 10.3389/fimmu.2021.635558

Abstract

The long-term pandemic of coronavirus disease 2019 (COVID-19) requires sensitive and accurate diagnostic assays to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus and SARS-CoV-2 antibodies in infected individuals. Currently, RNA of SARS-CoV-2 virus is mainly detected by reverse transcription-polymerase chain reaction (RT-PCR)-based nucleic acid assays, while SARS-CoV-2 antigen and antibody are identified by immunological assays. Both nucleic acid assays and immunological assays rely on the luminescence signals of specific luminescence probes for qualitative and quantitative detection. The exploration of novel luminescence probes will play a crucial role in improving the detection sensitivity of the assays. As innate probes, aggregation-induced emission (AIE) luminogens (AIEgens) exhibit negligible luminescence in the free state but enhanced luminescence in the aggregated or restricted states. Moreover, AIEgen-based nanoparticles (AIE dots) offer efficient luminescence, good biocompatibility and water solubility, and superior photostability. Both AIEgens and AIE dots have been widely used for high-performance detection of biomolecules and small molecules, chemical/biological imaging, and medical therapeutics. In this review, the availability of AIEgens and AIE dots in nucleic acid assays and immunological assays are enumerated and discussed. By building a bridge between AIE materials and COVID-19, we hope to inspire researchers to use AIE materials as a powerful weapon against COVID-19.

Copyright © 2021 Liu, Meng, Tang, Tian and Guan.

Keywords: COVID-19; aggregation-induced emission; diagnosis; immunoassay; nucleic acid

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

  1. Anal Bioanal Chem. 2021 Jan;413(1):49-71 - PubMed
  2. Adv Mater. 2020 Jan;32(1):e1903530 - PubMed
  3. Anal Chem. 2020 Aug 4;92(15):10196-10209 - PubMed
  4. Small. 2016 Dec;12(47):6613-6622 - PubMed
  5. Bioorg Med Chem Lett. 2014 Apr 1;24(7):1654-6 - PubMed
  6. Front Chem. 2019 Apr 24;7:228 - PubMed
  7. Chem Rev. 2015 Nov 11;115(21):11718-940 - PubMed
  8. Anal Chem. 2014 Oct 7;86(19):9866-72 - PubMed
  9. Chem Commun (Camb). 2006 Sep 21;(35):3705-7 - PubMed
  10. J Clin Microbiol. 2020 May 26;58(6): - PubMed
  11. J Mater Chem B. 2018 Feb 28;6(8):1279-1285 - PubMed
  12. JAMA. 2020 Aug 25;324(8):782-793 - PubMed
  13. Acc Chem Res. 2018 Jun 19;51(6):1404-1414 - PubMed
  14. Biosens Bioelectron. 2020 Feb 15;150:111912 - PubMed
  15. Biosens Bioelectron. 2019 Jun 15;135:173-180 - PubMed
  16. Biosens Bioelectron. 2017 Mar 15;89(Pt 1):417-421 - PubMed
  17. J Am Chem Soc. 2014 Jul 16;136(28):9890-3 - PubMed
  18. Chem Commun (Camb). 2001 Sep 21;(18):1740-1 - PubMed
  19. Chem Soc Rev. 2014 Sep 21;43(18):6570-97 - PubMed
  20. ACS Appl Mater Interfaces. 2014 Oct 22;6(20):18344-51 - PubMed
  21. Curr Opin Virol. 2011 Oct;1(4):226-32 - PubMed
  22. Angew Chem Int Ed Engl. 2020 Jun 15;59(25):9888-9907 - PubMed
  23. Chemistry. 2008;14(21):6428-37 - PubMed
  24. Talanta. 2021 Feb 1;223(Pt 1):121704 - PubMed
  25. Chem Commun (Camb). 2013 Jul 4;49(52):5835-7 - PubMed
  26. Front Chem. 2019 Jul 11;7:493 - PubMed
  27. Angew Chem Int Ed Engl. 2020 Jun 15;59(25):9868-9886 - PubMed
  28. Angew Chem Int Ed Engl. 2020 Jun 15;59(25):9856-9867 - PubMed
  29. Science. 2005 Sep 16;309(5742):1864-8 - PubMed
  30. Chem Rev. 2020 May 27;120(10):4534-4577 - PubMed
  31. Acta Biomater. 2017 Mar 1;50:334-343 - PubMed
  32. Org Lett. 2020 Mar 6;22(5):1836-1840 - PubMed
  33. Front Immunol. 2020 Jun 23;11:1518 - PubMed
  34. Angew Chem Int Ed Engl. 2020 Jul 27;59(31):12800-12805 - PubMed
  35. Acc Chem Res. 2019 Sep 17;52(9):2559-2570 - PubMed
  36. Chem Sci. 2017 Aug 1;8(8):5440-5446 - PubMed
  37. Chem Commun (Camb). 2014 Jun 21;50(49):6494-7 - PubMed
  38. Front Immunol. 2020 Jun 30;11:1606 - PubMed
  39. Colloids Surf B Biointerfaces. 2016 Jul 1;143:440-446 - PubMed
  40. ACS Cent Sci. 2020 May 27;6(5):591-605 - PubMed
  41. RNA. 2020 Jul;26(7):771-783 - PubMed
  42. J Mater Chem B. 2015 Jul 7;3(25):4993-4996 - PubMed
  43. Chem Asian J. 2013 Aug;8(8):1806-12 - PubMed
  44. Chemistry. 2010 Jan 25;16(4):1232-45 - PubMed
  45. J Mater Chem B. 2019 Mar 7;7(9):1435-1441 - PubMed
  46. ACS Nano. 2018 Sep 25;12(9):9549-9557 - PubMed
  47. J Am Chem Soc. 2019 Dec 26;141(51):20097-20106 - PubMed
  48. Talanta. 2020 Nov 1;219:121245 - PubMed
  49. Adv Mater. 2020 Dec;32(49):e2004208 - PubMed
  50. Clin Chim Acta. 2020 Nov;510:488-497 - PubMed

Substances

MeSH terms

Publication Types