Display options
Share it on

ACS Omega. 2021 Feb 26;6(10):7058-7067. doi: 10.1021/acsomega.0c06327. eCollection 2021 Mar 16.

Antifouling Silicone Hydrogel Contact Lenses with a Bioinspired 2-Methacryloyloxyethyl Phosphorylcholine Polymer Surface.

ACS omega

Kazuhiko Ishihara, Kyoko Fukazawa, Vinay Sharma, Shuang Liang, Amanda Shows, Daniel Chuck Dunbar, Yang Zheng, Junhao Ge, Steve Zhang, Ye Hong, Xinfeng Shi, James Yuliang Wu

Affiliations

  1. Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
  2. Alcon Vision LLC, Fort Worth, Texas 76134, United States.
  3. Alcon Vision LLC, Duluth, Georgia 30097, United States.

PMID: 33748619 PMCID: PMC7970573 DOI: 10.1021/acsomega.0c06327

Abstract

Inspired by the cell membrane surface as well as the ocular tissue, a novel and clinically applicable antifouling silicone hydrogel contact lens material was developed. The unique chemical and biological features on the surface on a silicone hydrogel base substrate were achieved by a cross-linked polymer layer composed of 2-methacryloyloxyethyl phosphorylcholine (MPC), which was considered important for optimal on-eye performance. The effects of the polymer layer on adsorption of biomolecules, such as lipid and proteins, and adhesion of cells and bacteria were evaluated and compared with several conventional silicone hydrogel contact lens materials. The MPC polymer layer provided significant resistance to lipid deposition as visually demonstrated by the three-dimensional confocal images of whole contact lenses. Also, fibroblast cell adhesion was decreased to a 1% level compared with that on the conventional silicone hydrogel contact lenses. The movement of the cells on the surface of the MPC polymer-modified lens material was greater compared with other silicone hydrogel contact lenses indicating that lubrication of the contact lenses on ocular tissue might be improved. The superior hydrophilic nature of the MPC polymer layer provides improved surface properties compared to the underlying silicone hydrogel base substrate.

© 2021 American Chemical Society.

Conflict of interest statement

The authors declare the following competing financial interest(s): V.S., S.L., A.S, D.C.D., Y.Z., J.G., S.Z., Y.H., X.S., and J.Y.W. are employees of Alcon Vision, LLC, Fort Worth, TX, and Duluth, GA,

References

  1. J Vet Med Sci. 2008 Feb;70(2):167-73 - PubMed
  2. J Med Biol Eng. 2015;35(2):143-155 - PubMed
  3. J Biomed Mater Res B Appl Biomater. 2009 Jan;88(1):75-82 - PubMed
  4. Optom Vis Sci. 1991 Nov;68(11):858-64 - PubMed
  5. J Vasc Surg. 1990 Apr;11(4):599-606 - PubMed
  6. Materials (Basel). 2019 Jan 14;12(2): - PubMed
  7. Optom Vis Sci. 2009 Mar;86(3):251-9 - PubMed
  8. J Biomed Mater Res B Appl Biomater. 2018 Apr;106(3):1064-1072 - PubMed
  9. Langmuir. 2015 Mar 17;31(10):3108-14 - PubMed
  10. J Biomed Mater Res A. 2005 Jun 1;73(3):359-66 - PubMed
  11. Optom Vis Sci. 2010 Jul;87(7):E475-81 - PubMed
  12. Macromol Rapid Commun. 2011 Jul 1;32(13):952-7 - PubMed
  13. Cont Lens Anterior Eye. 2000;23(4):119-23 - PubMed
  14. J Cataract Refract Surg. 2006 May;32(5):859-66 - PubMed
  15. Biomacromolecules. 2016 Mar 14;17(3):1179-85 - PubMed
  16. J Biomed Mater Res B Appl Biomater. 2006 Feb;76(2):412-8 - PubMed
  17. J Mater Sci Mater Med. 2011 Dec;22(12):2651-7 - PubMed
  18. Biomaterials. 2010 Apr;31(12):3274-80 - PubMed
  19. J Biomed Mater Res. 1991 Nov;25(11):1397-407 - PubMed
  20. Cont Lens Anterior Eye. 2017 Apr;40(2):70-81 - PubMed
  21. CLAO J. 1997 Oct;23(4):249-58 - PubMed
  22. J Biomed Mater Res. 1998 Feb;39(2):323-30 - PubMed
  23. J Biomed Mater Res B Appl Biomater. 2009 Apr;89(1):184-90 - PubMed
  24. Eye Contact Lens. 2013 Jan;39(1):4-12 - PubMed
  25. Expert Rev Med Devices. 2006 Mar;3(2):167-74 - PubMed
  26. Mol Vis. 2011;17:3392-405 - PubMed
  27. Acta Biomater. 2015 Oct;26:184-94 - PubMed
  28. J Phys Chem B. 2014 Dec 18;118(50):14640-7 - PubMed
  29. Biomaterials. 2001 Jan;22(2):99-111 - PubMed
  30. Clin Exp Ophthalmol. 2007 Jul;35(5):462-7 - PubMed
  31. Langmuir. 2019 Feb 5;35(5):1778-1787 - PubMed
  32. Biomaterials. 2000 Jun;21(12):1197-205 - PubMed
  33. Clin Ophthalmol. 2016 Jul 28;10:1423-33 - PubMed
  34. J Biomed Mater Res B Appl Biomater. 2013 Nov;101(8):1516-23 - PubMed
  35. J Biomater Appl. 2011 Jul;26(1):85-99 - PubMed
  36. Can J Microbiol. 1988 Mar;34(3):287-98 - PubMed
  37. J Biomed Mater Res A. 2019 May;107(5):933-943 - PubMed
  38. J Ophthalmol. 2017;2017:5131764 - PubMed
  39. Polymers (Basel). 2019 May 31;11(6): - PubMed
  40. J Biomed Mater Res B Appl Biomater. 2008 May;85(2):361-7 - PubMed
  41. J Biomater Sci Polym Ed. 2017 Jul - Aug;28(10-12):884-899 - PubMed
  42. Mater Sci Eng C Mater Biol Appl. 2019 Nov;104:109916 - PubMed
  43. Colloids Surf B Biointerfaces. 2021 Mar;199:111539 - PubMed
  44. J Mol Recognit. 2016 Feb;29(2):95-101 - PubMed
  45. Eye Contact Lens. 2018 Nov;44 Suppl 2:S221-S226 - PubMed
  46. Langmuir. 2005 Jun 21;21(13):5980-7 - PubMed
  47. CLAO J. 1999 Jan;25(1):40-7 - PubMed
  48. J Biomater Sci Polym Ed. 1999;10(10):1047-61 - PubMed
  49. Optom Vis Sci. 2012 Nov;89(11):1574-81 - PubMed
  50. Am J Ophthalmol. 2009 Jan;147(1):134-9 - PubMed
  51. Anal Biochem. 1985 Oct;150(1):76-85 - PubMed
  52. Appl Environ Microbiol. 1983 Jul;46(1):90-7 - PubMed
  53. Ophthalmol Clin North Am. 2003 Sep;16(3):327-40, v - PubMed
  54. ACS Appl Mater Interfaces. 2019 Aug 7;11(31):27615-27623 - PubMed
  55. J Biomed Mater Res B Appl Biomater. 2017 Apr;105(3):668-678 - PubMed
  56. Eye Contact Lens. 2013 Jan;39(1):100-8 - PubMed
  57. Cont Lens Anterior Eye. 2020 Apr;43(2):144-148 - PubMed
  58. Invest Ophthalmol Vis Sci. 2012 Jun 08;53(7):3473-80 - PubMed
  59. Colloids Surf B Biointerfaces. 2013 Feb 1;102:923-30 - PubMed
  60. Rev Sci Instrum. 2015 Mar;86(3):033705 - PubMed
  61. Colloids Surf B Biointerfaces. 2019 Aug 1;180:229-236 - PubMed

Publication Types