Display options
Share it on

Physiol Plant. 2021 Dec;173(4):1392-1420. doi: 10.1111/ppl.13425. Epub 2021 May 09.

Early responses to salt stress in quinoa genotypes with opposite behavior.

Physiologia plantarum

Federico Vita, Stefano Ghignone, Nadia Bazihizina, Fatemeh Rasouli, Leonardo Sabbatini, Ali Kiani-Pouya, Claudia Kiferle, Sergey Shabala, Raffaella Balestrini, Stefano Mancuso

Affiliations

  1. Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Florence, Italy.
  2. National Research Council of Italy, Institute for Sustainable Plant Protection (CNR-IPSP), Torino, Italy.
  3. Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Australia.
  4. Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.
  5. International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China.

PMID: 33847396 DOI: 10.1111/ppl.13425

Abstract

Soil salinity is among the major abiotic stresses that plants must cope with, mainly in arid and semiarid regions. The tolerance to high salinity is an important agronomic trait to sustain food production. Quinoa is a halophytic annual pseudo-cereal species with high nutritional value that can secrete salt out of young leaves in external non-glandular cells called epidermal bladder cells (EBC). Previous work showed high salt tolerance, but low EBC density was associated with an improved response in the early phases of salinity stress, mediated by tissue-tolerance traits mainly in roots. We compared the transcript profiling of two quinoa genotypes with contrasting salt tolerance patterning to identify the candidate genes involved in the differentially early response among genotypes. The transcriptome profiling, supported by in vitro physiological analyses, provided insights into the early-stage molecular mechanisms, both at the shoot and root level, based on the sensitive/tolerance traits. Results showed the presence of numerous differentially expressed genes among genotypes, tissues, and treatments, with genes involved in hormonal and stress response upregulated mainly in the sensitive genotype, suggesting that tolerance may be correlated to restricted changes in gene expression, at least after a short salt stress. These data, showing constitutive differences between the two genotypes, represent a solid basis for further studies to characterize the salt tolerance traits. Additionally, new information provided by this work might be useful for the development of plant breeding or genome engineering programs in quinoa.

© 2021 Scandinavian Plant Physiology Society.

References

  1. Ayarpadikannan, S., Chung, E., Cho, C.W., So, H.A., Kim, S.O., Jeon, J.M. et al. (2012) Exploration for the salt stress tolerance genes from a salt-treated halophyte, Suaeda asparagoides. Plant Cell Reports, 31, 35-48. - PubMed
  2. Bahieldin, A., Atef, A., Edris, S., Gadalla, N.O., Ali, H.M., Hassan, S.M. et al. (2016) Ethylene responsive transcription factor ERF109 retards PCD and improves salt tolerance in plant. BMC Plant Biology, 16, 216. - PubMed
  3. Balestrini, R., Rosso, L.C., Veronico, P., Melillo, M.T., De Luca, F., Fanelli, E. et al. (2019) Transcriptomic responses to water deficit and nematode infection in mycorrhizal tomato roots. Frontiers in Microbiology, 10, 1807. - PubMed
  4. Banerjee, J., Gantait, S. & Maiti, M.K. (2017) Physiological role of rice germin-like protein 1 (OsGLP1) at early stages of growth and development in indica rice cultivar under salt stress condition. Plant Cell, Tissue and Organ Culture, 131, 127-137. - PubMed
  5. Bazile, D., Jacobsen, S.-E. & Verniau, A. (2016) The global expansion of quinoa: trends and limits. Frontiers in Plant Science, 7, 1-6. - PubMed
  6. Becker, V.I., Goessling, J.W., Duarte, B., Caçador, I., Liu, F., Rosenqvist, E. et al. (2017) Combined effects of soil salinity and high temperature on photosynthesis and growth of quinoa plants (Chenopodium quinoa). Functional Plant Biology, 44, 665-678. - PubMed
  7. Beddington J (2010) Global food and farming futures. - PubMed
  8. Böhm, J., Messerer, M., Müller, H.M., Scholz-Starke, J., Gradogna, A., Scherzer, S. et al. (2018) Understanding the molecular basis of salt sequestration in epidermal bladder cells of Chenopodium quinoa. Current Biology, 28, 3075-3085.e7. - PubMed
  9. Bonales-Alatorre, E., Pottosin, I., Shabala, L., Chen, Z.H., Zeng, F., Jacobsen, S.E. et al. (2013) Differential activity of plasma and vacuolar membrane transporters contributes to genotypic differences in salinity tolerance in a halophyte species, Chenopodium quinoa. International Journal of Molecular Sciences, 14, 9267-9285. - PubMed
  10. Chen, H. & Boutros, P.C. (2011) VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinformatics, 12, 35. - PubMed
  11. Chen, K., Li, G.-J., Bressan, R.A., Song, C.-P., Zhu, J.-K. & Zhao, Y. (2020) Abscisic acid dynamics, signaling, and functions in plants. Journal of Integrative Plant Biology, 62, 25-54. - PubMed
  12. Chinnusamy, V., Jagendorf, A. & Zhu, J.-K. (2005) Understanding and improving salt tolerance in plants. Crop Science, 45, 437-448. - PubMed
  13. Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S. et al. (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics, 29, 15-21. - PubMed
  14. Du, M., Zhai, Q., Deng, L., Li, S., Li, H., Yan, L. et al. (2014) Closely related NAC transcription factors of tomato differentially regulate stomatal closure and reopening during pathogen attack. Plant Cell, 26, 3167-3184. - PubMed
  15. Duarte-Delgado, D., Dadshani, S., Schoof, H., Oyiga, B.C., Schneider, M., Mathew, B. et al. (2020) Transcriptome profiling at osmotic and ionic phases of salt stress response in bread wheat uncovers trait-specific candidate genes. BMC Plant Biology, 20, 1-18. - PubMed
  16. Fiallos-Jurado, J., Pollier, J., Moses, T., Arendt, P., Barriga-Medina, N., Morillo, E. et al. (2016) Saponin determination, expression analysis and functional characterization of saponin biosynthetic genes in Chenopodium quinoa leaves. Plant Science, 250, 188-197. - PubMed
  17. Freitas, V.S., de Souza, M.R., Costa, J.H., de Oliveira, D.F., de Oliveira, P.S., de Castro, M.E. et al. (2018) Ethylene triggers salt tolerance in maize genotypes by modulating polyamine catabolism enzymes associated with H2O2 production. Environmental and Experimental Botany, 145, 75-86. - PubMed
  18. García-parra M, Zurita-silva A, Stechauner-rohringer R, Roa-acosta D (2020) Quinoa ( Chenopodium quinoa Willd.) and its relationship with agroclimatic characteristics: a Colombian perspective. 80: 290-302 - PubMed
  19. Gupta, V., Raghuvanshi, S., Gupta, A., Saini, N., Gaur, A., Khan, M.S. et al. (2010) The water-deficit stress-and red-rot-related genes in sugarcane. Functional and Integrative Genomics, 10, 207-214. - PubMed
  20. Hasanuzzaman, M., Nahar, K., Alam, M., Bhowmik, P.C., Hossain, M., Rahman, M.M. et al. (2014) Potential use of halophytes to remediate saline soils. BioMed Research International, 2014, 589341. - PubMed
  21. Heitkam, T., Weber, B., Walter, I., Liedtke, S., Ost, C. & Schmidt, T. (2020) Satellite DNA landscapes after allotetraploidization of quinoa (Chenopodium quinoa) reveal unique a and B subgenomes. The Plant Journal, 103, 32-52. - PubMed
  22. Hinojosa, L., González, J.A., Barrios-Masias, F.H., Fuentes, F. & Murphy, K.M. (2018) Quinoa abiotic stress responses: a review. Plants, 7, 106. - PubMed
  23. Hong, Y., Zhang, W. & Wang, X. (2010) Phospholipase D and phosphatidic acid signalling in plant response to drought and salinity. Plant, Cell and Environment, 33, 627-635. - PubMed
  24. Hussain, S., Zhong, C., Bai, Z., Cao, X., Zhu, L., Hussain, A. et al. (2018) Effects of 1-methylcyclopropene on rice growth characteristics and superior and inferior spikelet development under salt stress. Journal of Plant Growth Regulation, 37, 1368-1384. - PubMed
  25. Imamura, T., Yasui, Y., Koga, H., Takagi, H., Abe, A., Nishizawa, K. et al. (2020) A novel WD40-repeat protein involved in formation of epidermal bladder cells in the halophyte quinoa. Communications Biology, 3, 1-14. - PubMed
  26. Iovieno, P., Punzo, P., Guida, G., Mistretta, C., Van Oosten, M.J., Nurcato, R. et al. (2016) Transcriptomic changes drive physiological responses to progressive drought stress and rehydration in tomato. Frontiers in Plant Science, 7, 371. - PubMed
  27. Jacobsen, S.E., Mujica, A. & Jensen, C.R. (2003) The resistance of quinoa (Chenopodium quinoa Willd.) to adverse abiotic factors. Food Review International, 19, 99-109. - PubMed
  28. Jarvis, D.E., Ho, Y.S., Lightfoot, D.J., Schmöckel, S.M., Li, B., Borm, T.J.A. et al. (2017) The genome of Chenopodium quinoa. Nature, 542, 307-312. - PubMed
  29. Jin, H., Dong, D., Yang, Q. & Zhu, D. (2016) Salt-responsive transcriptome profiling of Suaeda glauca via RNA sequencing. PLoS One, 11, 1-14. - PubMed
  30. Kiani-Pouya, A., Rasouli, F., Bazihizina, N., Zhang, H., Hedrich, R. & Shabala, S. (2019) A large-scale screening of quinoa accessions reveals an important role of epidermal bladder cells and stomatal patterning in salinity tolerance. Environmental and Experimental Botany, 168, 103885. - PubMed
  31. Kiani-Pouya, A., Rasouli, F., Shabala, L., Tahir, A.T., Zhou, M. & Shabala, S. (2020) Understanding the role of root-related traits in salinity tolerance of quinoa accessions with contrasting epidermal bladder cell patterning. Planta, 251, 1-11. - PubMed
  32. Kiani-Pouya, A., Roessner, U., Jayasinghe, N.S., Lutz, A., Rupasinghe, T., Bazihizina, N. et al. (2017) Epidermal bladder cells confer salinity stress tolerance in the halophyte quinoa and Atriplex species. Plant, Cell & Environment, 40, 1900-1915. - PubMed
  33. Koyro, H.W. & Eisa, S.S. (2008) Effect of salinity on composition, viability and germination of seeds of Chenopodium quinoa Willd. Plant and Soil, 302, 79-90. - PubMed
  34. Krishnamurthy, P., Mohanty, B., Wijaya, E., Lee, D.Y., Lim, T.M., Lin, Q. et al. (2017) Transcriptomics analysis of salt stress tolerance in the roots of the mangrove Avicennia officinalis. Scientific Reports, 7, 1-19. - PubMed
  35. Kuromori, T., Seo, M. & Shinozaki, K. (2018) ABA transport and plant water stress responses. Trends in Plant Science, 23, 513-522. - PubMed
  36. Li, S., Fan, C., Li, Y., Zhang, J., Sun, J., Chen, Y. et al. (2016) Effects of drought and salt-stresses on gene expression in Caragana korshinskii seedlings revealed by RNA-seq. BMC Genomics, 17, 1-19. - PubMed
  37. Liao, Y., Smyth, G.K. & Shi, W. (2019) The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads. Nucleic Acids Research, 47, e47. - PubMed
  38. Liu, M., Pan, T., Allakhverdiev, S.I., Yu, M. & Shabala, S. (2020) Crop halophytism: an environmentally sustainable solution for global food security. Trends in Plant Science, 25, 630-634. - PubMed
  39. Liu, X., Zhang, R., Ou, H., Gui, Y., Wei, J., Zhou, H. et al. (2018) Comprehensive transcriptome analysis reveals genes in response to water deficit in the leaves of Saccharum narenga (Nees ex Steud.) hack. BMC Plant Biology, 18, 1-16. - PubMed
  40. Livak, K.J. & Schmittgen, T.D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 25, 402-408. - PubMed
  41. Love, M.I., Huber, W. & Anders, S. (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15, 550. - PubMed
  42. Luo, D., Hou, X., Zhang, Y., Meng, Y., Zhang, H., Liu, S. et al. (2019) CaDHN5, a dehydrin gene from pepper, plays an important role in salt and osmotic stress responses. International Journal of Molecular Sciences, 20, 1989. - PubMed
  43. Misra, A., McKnight, T.D. & Mandadi, K.K. (2018) Bromodomain proteins GTE9 and GTE11 are essential for specific BT2-mediated sugar and ABA responses in Arabidopsis thaliana. Plant Molecular Biology, 96, 393-402. - PubMed
  44. Müller, M. & Munné-Bosch, S. (2015) Ethylene response factors: a key regulatory hub in hormone and stress signaling. Plant Physiology, 169, 32-41. - PubMed
  45. Munns, R. (2002) Comparative physiology of salt and water stress. Plant, Cell and Environment, 25, 239-250. - PubMed
  46. Munns, R. (2005) Genes and salt tolerance: bringing them together. The New Phytologist, 167, 645-663. - PubMed
  47. Munns, R. & Gilliham, M. (2015) Salinity tolerance of crops - what is the cost? The New Phytologist, 208, 668-673. - PubMed
  48. Nikalje, G.C., Nikam, T.D. & Suprasanna, P. (2017) Looking at halophytic adaptation to high salinity through genomics landscape. Current Genomics, 18, 542-552. - PubMed
  49. Orsini, F., Accorsi, M., Gianquinto, G., Dinelli, G., Antognoni, F., Carrasco, K.B.R. et al. (2011) Beyond the ionic and osmotic response to salinity in Chenopodium quinoa: functional elements of successful halophytism. Functional Plant Biology, 38, 818-831. - PubMed
  50. Rasouli, F., Kiani-Pouya, A., Tahir, A., Shabala, L., Chen, Z. & Shabala, S. (2021) A comparative analysis of stomatal traits and photosynthetic responses in closely related halophytic and glycophytic species under saline conditions. Environmental and Experimental Botany, 181, 104300. - PubMed
  51. Rau, A., Gallopin, M., Celeux, G. & Jaffrézic, F. (2013) Data-based filtering for replicated high-throughput transcriptome sequencing experiments. Bioinformatics, 29, 2146-2152. - PubMed
  52. Repo-Carrasco, R., Espinoza, C. & Jacobsen, S.-E. (2003) Nutritional value and use of the Andean crops quinoa (Chenopodium quinoa) and kañiwa (Chenopodium pallidicaule). Food Review International, 19, 179-189. - PubMed
  53. Rietz, S., Bernsdorff, F.E.M. & Cai, D. (2012) Members of the germin-like protein family in Brassica napus are candidates for the initiation of an oxidative burst that impedes pathogenesis of Sclerotinia sclerotiorum. Journal of Experimental Botany, 63, 5507-5519. - PubMed
  54. Riyazuddin, R., Verma, R., Singh, K., Nisha, N., Keisham, M., Bhati, K.K. et al. (2020) Ethylene: a master regulator of salinity stress tolerance in plants. Biomolecules, 10, 959. - PubMed
  55. Roy, S.J., Negrão, S. & Tester, M. (2014) Salt resistant crop plants. Current Opinion in Biotechnology, 26, 115-124. - PubMed
  56. Ruiz-Carrasco, K., Antognoni, F., Coulibaly, A.K., Lizardi, S., Covarrubias, A., Martínez, E.A. et al. (2011) Variation in salinity tolerance of four lowland genotypes of quinoa (Chenopodium quinoa Willd.) as assessed by growth, physiological traits, and sodium transporter gene expression. Plant Physiology and Biochemistry, 49, 1333-1341. - PubMed
  57. Sakamoto, H., Matsuda, O. & Iba, K. (2008) ITN1, a novel gene encoding an ankyrin-repeat protein that affects the ABA-mediated production of reactive oxygen species and is involved in salt-stress tolerance in Arabidopsis thaliana. The Plant Journal, 56, 411-422. - PubMed
  58. Schmöckel, S.M., Lightfoot, D.J., Razali, R., Tester, M. & Jarvis, D.E. (2017) Identification of putative transmembrane proteins involved in salinity tolerance in Chenopodium quinoa by integrating physiological data, RNAseq, and SNP analyses. Frontiers in Plant Science, 8, 1-12. - PubMed
  59. Shabala, L., Mackay, A., Tian, Y., Jacobsen, S.E., Zhou, D. & Shabala, S. (2012) Oxidative stress protection and stomatal patterning as components of salinity tolerance mechanism in quinoa (Chenopodium quinoa). Physiologia Plantarum, 146, 26-38. - PubMed
  60. Shabala, S. (2000) Ionic and osmotic components of salt stress specifically modulate net ion fluxes from bean leaf mesophyll. Plant, Cell and Environment, 23, 825-837. - PubMed
  61. Shabala, S., Bose, J. & Hedrich, R. (2014) Salt bladders: do they matter? Trends in Plant Science, 19, 687-691. - PubMed
  62. Shabala, S., Hariadi, Y. & Jacobsen, S.E. (2013) Genotypic difference in salinity tolerance in quinoa is determined by differential control of xylem Na+ loading and stomatal density. Journal of Plant Physiology, 170, 906-914. - PubMed
  63. Shi, P. & Gu, M. (2020) Transcriptome analysis and differential gene expression profiling of two contrasting quinoa genotypes in response to salt stress. BMC Plant Biology, 20, 1-15. - PubMed
  64. Shrivastava, P. & Kumar, R. (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences, 22, 123-131. - PubMed
  65. Sun, X., Xu, L., Wang, Y., Luo, X., Zhu, X., Kinuthia, K.B. et al. (2016) Transcriptome-based gene expression profiling identifies differentially expressed genes critical for salt stress response in radish (Raphanus sativus L.). Plant Cell Reports, 35, 329-346. - PubMed
  66. R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. - PubMed
  67. Tilman, D., Balzer, C., Hill, J. & Befort, B.L. (2011) Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences, 108, 20260-20264. - PubMed
  68. Villarino, G.H., Bombarely, A., Giovannoni, J.J., Scanlon, M.J. & Mattson, N.S. (2014) Transcriptomic analysis of Petunia hybrida in response to salt stress using high throughput RNA sequencing. PLoS One, 9, 1-13. - PubMed
  69. Wang, Q., Kanga, L., Lin, C., Song, Z., Tao, C., Liu, W. et al. (2019) Transcriptomic evaluation of Miscanthus photosynthetic traits to salinity stress. Biomass and Bioenergy, 125, 123-130. - PubMed
  70. Yang, C., Ma, B., He, S.-J., Xiong, Q., Duan, K.-X., Yin, C.-C. et al. (2015) MAOHUZI6/ETHYLENE INSENSITIVE3-LIKE1 and ETHYLENE INSENSITIVE3-LIKE2 regulate ethylene response of roots and coleoptiles and negatively affect salt tolerance in rice. Plant Physiology, 169, 148-165. - PubMed
  71. Yang, L., Zu, Y.-G. & Tang, Z.-H. (2013) Ethylene improves Arabidopsis salt tolerance mainly via retaining K+ in shoots and roots rather than decreasing tissue Na+ content. Environmental and Experimental Botany, 86, 60-69. - PubMed
  72. Yang, Y. & Guo, Y. (2018) Unraveling salt stress signaling in plants. Journal of Integrative Plant Biology, 60, 796-804. - PubMed
  73. Yoshida, T., Sakuma, Y., Todaka, D., Maruyama, K., Qin, F., Mizoi, J. et al. (2008) Functional analysis of an Arabidopsis heat-shock transcription factor HsfA3 in the transcriptional cascade downstream of the DREB2A stress-regulatory system. Biochemical and Biophysical Research Communications, 368, 515-521. - PubMed
  74. Zhang, D., Wan, Q., He, X., Ning, L., Huang, Y., Xu, Z. et al. (2016) Genome-wide characterization of the ankyrin repeats gene family under salt stress in soybean. Science of The Total Environment, 568, 899-909. - PubMed
  75. Zhu, G., Li, W., Zhang, F. & Guo, W. (2018) RNA-seq analysis reveals alternative splicing under salt stress in cotton, Gossypium davidsonii. BMC Genomics, 19, 1-15. - PubMed
  76. Zou, C., Chen, A., Xiao, L., Muller, H.M., Ache, P., Haberer, G. et al. (2017) A high-quality genome assembly of quinoa provides insights into the molecular basis of salt bladder-based salinity tolerance and the exceptional nutritional value. Cell Research, 27, 1327-1340. - PubMed
  77. Zurita-Silva, A., Fuentes, F., Zamora, P., Jacobsen, S.E. & Schwember, A.R. (2014) Breeding quinoa (Chenopodium quinoa Willd.): potential and perspectives. Molecular Breeding, 34, 13-30. - PubMed

MeSH terms

Publication Types

Grant support